您现在的位置是:首页 > 心得体会
《乘法分配律》教案 乘法分配律是几年级学的
《乘法分配律》教案 篇1
设计说明
教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:
1.游戏激趣,设置悬念。
在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。
2.观察、比较,举例验证猜想。
在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。
3.多角度练习,强化认识和理解。
小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。
课前准备
教师准备 多媒体课件
教学过程
⊙游戏激趣
1.比赛热身。
师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。
师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。
(1)9×37+9×63 (2)9×(37+63)
2.评出胜负。
师:做完的同学请举手,汇报计算过程。
师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?
预设
生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。
师:同学们说得非常好,尤其是,我们就先将他的这个发现命名为猜想。
设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。
⊙引导探究,发现规律
1.课件出示例7。
一共有多少名同学参加了这次植树活动?
(1)需要知道哪些条件?请在情境图里找一找。(出示情境图)
(2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)
(3)小组讨论,尝试用不同的方法解决问题并板书。
引导各小组汇报解题方法,并说明这样解题的理由。
解法一 (4+2)×25
=6×25
=150(名)
(4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)
解法二 4×25+2×25
=100+50
=150(名)
(4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)
2.观察算式,探究发现。(见课堂活动卡)
(1)小组合作,讨论探究。
①两道算式有什么相同点?
②两道算式有什么不同点?
③两道算式有什么联系?
《乘法分配律》教案 篇2
教学目标:
知识与技能
1、理解乘法分配律的意义,并能正确地描述。
2、初步懂得运用乘法分配律进行简算。
过程与方法
1、让学生参与乘法分配律的归纳过程,培养学生概括、分析、推理的能力。
2、使学生了解从特殊到一般,再由一般到特殊这种认识事物的方法。
情感态度与价值观
通过观察、验证、归纳等数学活动,使学生体验数学问题的探索性,感受数学思考过程的条理性。使学生感受数学和现实生活的联系,培养学生学习数学的兴趣。
教学重难点:
重点
充分感知并归纳乘法分配律。
难点
理解乘法分配律的意义,充分感知并归纳乘法分配律。
教学准备:
多媒体课件。
教学设计:
一、创设情景,引入新课
同学们,你们看了自然环境被破坏而出现的沙尘暴、水土流失等一些情景的图片,有什么想说的吗?
生:1、我想大声的呼吁:请不要再滥伐树木了,不然的话沙尘暴会更厉害。
2、请保护好我们共同的家园吧!
3、要保护我们的家园,还要大量植树。
师:说的太好了。要保护我们的家园就要植树造林,种植花草。同学们,你们还记得前段时间学校植树活动的情况吗?
(多媒体展示植树的场景,并附文字:一共有25个小组参加植树活动,每组里4人负责挖坑、种树,2人负责抬水、浇树)
二、探究新知
1、探究乘法运算定律
(1)发现问题,提出问题,独立解决问题
师:同学们,你都得到了哪些数学信息?
学生回答。
师:根据这些信息,你能提出什么问题?
生:一共有多少同学参加了这次植树活动?
教师随学生的回答板书问题。
师:请根据这些信息解决这个问题。
学生列式计算。
(2)交流解决问题的方法
生展示汇报:
(4+2)×25 4×25+2×25
=6×25 =100+50
=150(人) =150(人)
师:谁和第一位同学的算式一样?请举手。谁来说一说你们解决问题的步骤?
生:先用加法算出每组有几人,再乘25算出一共有多少人?
师:谁和第二位同学的算式一样?请举手。谁来说一说第二种方法解决问题的步骤?
生:根据收集到的信息,先分别算出负责挖坑种树的人数和抬水浇树的人数,再把这两部分合起来算出一共有多少人?
师:回答的很好。我们来看4×25和2×25分别表示什么?还有不同的想法吗?
生:我也是先算出每组有几人?即(4+2)×25。
师:同学们用不同的方法解决了这个问题,请大家一起回答这次植树活动的学生一共有多少人?(150人)
2、探究乘法分配律
(1)探讨
师:同学们用不同的方法解决了这个问题并且计算结果相同,那么,这两个算式之间有什么关系?
出示:(4+2)×25 4×25+2×25
生:两个算式的结果相等,在这两个算式中间可以用等号连接。
师:谁能用自己的语言来描述这个等式。
生1:4加2的和乘25等于4乘25加上2乘25。
2:4加2的和乘25等于先把4和2分别与25相乘再相加。
师:刚才同学们是先算出每组有几人,再算一共有多少人,算式为25×(4+2)。想一想:计算25乘4加2的和还可以怎样算呢?动手试试再把想法说给同桌听。
师:谁来给大家说自己的想法?
生:25乘4加2的和,可以先把25分别与4和2相乘,再相加。也就是先算25×4和25×2,再把两个积相加。即25×(4+2)=25×4+25×2
(2)举例观察
师:我们知道了4加2的和与25相乘,可以先把4和2与25分别相乘,再相加。请你再举出几个这样的例子,写在本子上。你怎么来说明你写的算式左右两边是相等的?
师:谁来汇报你写的式子,师随生汇报板书。请同学们观察这两组等式以及自己写的等式,有什么发现?请先和同学交流。
(3)交流概括
师:谁来说说自己的发现?
生:我发现,两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。
师:两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。这就叫乘法分配律。
板书课题:乘法分配律。
师:刚才同学们写的算式都对,那我们可不可以用一个算式就能表示出所有的式子?
生试着在练习本上写,并抽学生汇报。
生1:a、b表示两个加数,c表示因数。a加b的和乘c等于a乘c加b乘c。即(a+b)×c=a×c+b×c。
生2:a表示因数,b、c表示两个加数,a乘b加c的和等于a乘b加上a乘c。即a×(b+c)=a×b+a×c。
三、巩固练习
1、在□里填上适当的数。
(15+20)×12=□×12+□×12
25×(4+9)=□×4+□×9
8×(10+5)=□×□+□×□
75×24=75×□+75×□
2、把左右两边相等的算式用线连接起来。
48×12+52×12 15×18+26×18
(15+18)×26 25×40+25×4
25×(40+4)(48+52)×12
14×(45-5)11×4+25×4
(11×25)×4 14×45-14×5
《乘法分配律》教案 篇3
教学说明:
乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。
一、 观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。
二、 讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。
三、 练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。
四、 简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。
教学内容:乘法分配律 P28-29 例1、例2
教学目标:
1、知道乘法分配律的字母表达式。
2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。
3、会用乘法分配律使一些计算简便。
教学重点:理解掌握乘法分配律。
教学难点:乘法分配律的得出及其运用。
教学安排:
一、 观察与思考:
1、 出示例1:(1)看下图计算,有多少个小正方体?
A、用实物演示引出两种算法。
(5+3)2=16(个) 52+32=16(个)
B、观察以上两式得到:(5+3)2=52+32
2、 出示生活实例:
①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?
引导学生用两种方法解答,然后通过计算观察得出:
(30+20)4=200(元) 304+204=200(元)
即:(30+20)4=304+204
②2角硬币和5角硬币各6枚,一共有多少钱?
请学生同桌说说两种计算方法,然后汇报结果。
(2+5)6=42(角) 26+56=42(角)
即:(2+5)6=26+56
3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?
(前后两式是相等的'、先算和再算积与先算积再算和是一样的)
这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率
二、 讨论与归纳:
1、 出示问题,读读想想。
A、 以上三组算式分别先算什么?再算什么?
B、 它们之间有什么联系?
先小组讨论,再派代表汇报交流。
得出乘法分配律的正确说法。
看书,齐读乘法分配律。
2、 质疑。
为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?
(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)
3、 用字母表示乘法分配律。
(A+B)C=AC+BC
三、 练习:
1、 根据乘法分配律填上适当的数或运算符号。
(8+6)3=8○3○6○3
(25+9)40= 40+ 40
(56+ )3=56 +8
2、 判断:
13(4+8)=134+8 ( )
13(4+8)=138+48 ( )
13(4+8)=134+138 ( )
四、 简便运算:
1、 出示例2:(125+70)8
请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。
算好后同桌观察讨论:怎样算比较好?为什么?
教师总结:用乘法分配律能使一些计算简便。
2、 选择题:
1624+8424的简便算法是( )。
A、(16+24)84 B、(16+84)24 C、(1684)24
3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)
(25+9)8 29175+2529 48128-2848 7599+75
4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)
41□+5923 □□+6328
五、 小结:
1、 乘法分配律及字母表达式。
2、 运用乘法分配律应注意什么?
①运算符号 ②分配合理
《乘法分配律》教案 篇4
教学内容:教科书第54页得例题和第55页的“想想做做”。
教学目标:
1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2、使学生在观察、比较、猜测、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨和简洁。
3、使学生在数学活动过程中获得成功的体验,进一步增强数学学习的兴趣和自信心。
教学重点、难点:发现并理解乘法分配律
教学过程:
一、 铺垫孕伏
1口算
125×53×8 25×44
指名说出运用什么方法使计算简便
2出示两组算式
(6+4)×7 6×7+4×7
20×(5+2) 20×5+20×2
(10+25)×4 10×4+25×4
先口算,再说说每一组算式有什么关系?(结果相同)
所以我们可以用什么符号连接这两个算式?(等号)
谈话导入:
上学期我们学习了乘法的交换律和结合律。今天我们要学习乘法的另一个定律。
二、 探究新知
1、谈话:同学们,学校马上要进行广播操比赛了,体育老师准备给比赛的同学每人买一套服装,我们一看。
出示课件:(课本第54页例题情景图)
2、 提问:从图上你获得了哪些信息?
(每件短袖32元 每条裤子45元 每件夹克衫65元)
3、 提问:
体育老师买5件夹克衫和5条裤子,一共要付多少元?你能自己列综合等式解决这个问题吗?
4、 学生试做
5、教师巡视,让用(65+45)×5和65×5+45×5两种不同方法解答的学生分别口答。
教师板书:(65+45)×5=110×5=550(元)
65×5+45×5=325+225=550(元)
6、指名学生说说自己列的算式和思路
解法一:先算买一套衣服用多少元
解法二:先算买夹克衫和买裤子各用多少元
7提问:
这道题的两种算法不同,比较一下他们的结果。你发现了什么?(结果相同)
8谈话:结果相同的两个算式,可以用等号相连接
板书:(65+45)×5=65×5+45×5
9照上面的等式,你还能再说出一个吗?
课件出示(—+-)×-=-×-+-×-
10谈话:这样的等式有很多,今天我们一起来研究这样等式的规律。
三、 概括定律
1提问:
观察例题这两个算式,等号左边先算什么,再算什么?右边呢?
学生回答后(65+45)×5是用65与45的和同5相乘;65×5+45×5是把65和45分别同5相乘。
2提问:谁能用一句话把等号左边算式的特点概括出来?右边呢?
板书:两个数的和同另一个数相乘
两个数分别同一个数相乘,再把两个积相加
3提问:
既然等式两边计算结果相同,我们可以得到什么?
:两个数的和同另一个数相乘等于这两个数分别与另一个数相乘再相加
4同桌把乘法分配律完整地说一遍
5谈话:大家说得很好,你们发现的这个规律就是乘法分配律。(板书课题)
6练习
(1)、(42+35)×2=————
(2)、27×12+43×12=————
7、提问:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢?(3个)
8、谁会用字母a、b、c表示乘法分配律
板书:(a+b)×c=a×c+b×c
四、 巩固练习
1根据乘法分配律,填出另一道算式
15×26+15×14=□○(□○□)
72×(30+6)=□○□○□○□
2课本第55页“想想做做”第2题
(1)学生用手势判断
(2)谈话:第三题意见不统一,你是怎么判断的,不能确定时可以用什么方法?(计算)
提问:
怎么改算式,让同学们一看就知道他们相等?
(74可以写成74×1)
(3)提问:
第4题的两个算式为什么不相等?怎样改写可以使它们相等?
3选择题
24×(49+51)与下面的————式相等
(1)24×51+24×49
(2)(24+49)×(24+51)
(3)24×49×51
4拓展题:
把例题中的问题改成5件夹克衫比5条裤子多多少元,可以怎么做?学生试做后发现:两个数的差与一个数相乘,也可以用这两个数分别与这个数相乘,再把它们的积相减,这也是乘法分配律。
《乘法分配律》教案 篇5
教材分析
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的`。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生具有了很好的自主探究、团结合作、与人交流的习惯,学生在学习了探究(一)和探索(二)后,掌握了一些算式的规律 ,有了一些探索规律的方法和经验,有了一定的基础,本节课注重引导,指点,会收到很好的效果。
知识与技能:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感态度价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法的分配律。
教学难点:乘法的分配律的推理及运用。
《乘法分配律》教案 篇6
教学内容:
P36/例3(乘法分配律)
教学目的:
1、引导学生探究和理解乘法分配律。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
乘法分配律的意义和应用。
教学难点:
乘法分配律的反应用。
教学过程:
一、铺垫孕埋伏
思考问题。
在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?
二、新授
小组讨论,尝试用不同的方法解决。
教师引导学生用多种方法解答。
学生汇报自己的解法。引导学生说明不同算法的理由。
(1)(4+2)×25
=6×25
=150(人)
4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。
(2)4×25+2×25
=100+50
=150(人)
4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。
小组合作:
(1)两组算式有什么相同点?
(2)两组算式有什么不同点?
(3)两组算式有什么联系?
汇报。
教师要根据学生的汇报,灵活地进行引导,总结出要点。
你还能举出像这样的几组算式吗?
学生举例。
根据学生举例板书。
到底我们举的例子是不是符合这样的规律呢?请学生验证。
请学生用语言表述出发现的规律。
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
你有什么好方法帮助我们大家记住乘法分配律?
简记为:
和与一个数相乘=积相加
三、巩固练习
P36/做一做
P38/5
在练习小结中,帮助学生记忆乘法分配律。
四、小结
学生汇报自己的收获。
教师引导小结,相应完善板书。
板书设计:
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25 =100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
┆(学生举例)
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个
数分别相乘,再相加。这叫做乘法分配律。
《乘法分配律》教案 篇7
教材分析 :
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:
学生基础较差、有的学生学习习惯不好,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点:理解并掌握乘法分配律——发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、发现问题
1.出示情境图,让学生估计墙面上贴了多少块瓷砖。
2. 用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。
二、提出假设、举例验证、建立模型
1、根据上题的规律提出假设
2、验证提出的假设是否适合其它数据
观察上题算式的特点,小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。
全班交流,并用字母表示分配律。
三、运用乘法分配律的简算。
1、试一试
让学生尝试用乘法分配律解决运算中的简算问题。然后进行交流,概括出简算的方法
(10+7)×6=____×6+_____×6
8×(125+9)=8×_____+8×_____
7×48+7×52=______×(_____+_______)
2、练一练:
进一步尝试用用乘法分配律解决运算中的简算问题。
板书设计:
乘法分配律
6×9+4×9=90 40×25+4×25=1100
(6+4)×9=90 (40+4)×25=1100
乘法分配律:(a+b)×c=a×c+b×c
《乘法分配律》教案 篇8
教学内容:
教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。
教学目的:
使学生理解并掌握乘法分配律,培养学生的分析推理能力。
教学重难点:
乘法分配律
教具、学具准备:
教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。
教学过程:
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1.教学例6。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的算式写在黑板上。
还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5十3)4 54十34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:
这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5十3)4=54十34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18十7)6 186十76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。
这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15十9) 20xx十209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。
教师:如果用 表示三个数,乘法分配律可以写成下面的形式:
(a+b) c=ac+bc
等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)
等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1.这个算式中是哪两个数的和乘以哪个数?
根据乘法分配律,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?
2.做第64页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?
根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?
第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)
第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)
四、作业
练习十四的第1、2题。
《乘法分配律》教案 篇9
教学目标
知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。
培养学生观察、比较、抽象、概括等能力。
培养学生的数感和符号感。
情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。
教学重难点
教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。
教学难点:应用乘法分配律解决实际问题。
教学工具
课件
教学过程
(一)生活引入,感知规律
1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。
2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。
3、爸爸和妈妈都爱我,这句话还可以怎样说?
4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?
5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。
[策略] 把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。
(二)开放探究,建构规律
1、情境引入
讲本学期开学,学校要为一、二、三年级更换桌椅情况:
(课件播放),提出问题,引发学生思考:
(1)请仔细观察大屏幕:
学校为一年级更换3套桌椅共需要多少钱?
学校为二年级更换5套桌椅共需要多少钱?
学校为三年级更换6套桌椅共需要多少钱?
(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?
(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。
(4)谁愿意接着汇报?
2、第一次发现
(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。
小结:每一组算式的结果相等。
(2)我把这两个算式用等号来连接,行吗?为什么?
板书:(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
3、第二次发现
(1)再观察这三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮助验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4、归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5、个性化理解
(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(□+○)×☆=□×☆+○×☆
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎么样?
[策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。
(三)激活联系、应用规律。
1、请你把相等的两个算式连线。
(8+13)×4 41×(3+27)
3×(21+6) 7×5 +8
41×3 +41×27 3×21 +3×6
7×(5+8) 8×4 +13×4
(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?
2、根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不同意见吗?
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。
[策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。
3、联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
[策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。
(四)课堂小结:
今天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
……
(a+b)×c = a×c+b×c
《乘法分配律》教案 篇10
教学内容:
数学四年级上册P48探索与发现(三)乘法分配律
教学目标:
1、使学生理解并掌握乘法分配律,并会用字母表示。
2、能够运用乘法的分配律进行简便计算。
3、培养学生观察发现、猜想、举例验证,得出结论等初步的逻辑思维能力。
4、培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点:
理解并掌握乘法分配律。
教学难点:
乘法分配律的推理及运用。
教学准备:
多媒体,题单
教学过程:
一、创设情境,调动参与。
师:以往上课只有老师和同学们,今天还有谁来了?
生:爸爸妈妈
师:爱爸爸妈妈吗?
生:爱。
师:把这一句话,分成两句话,怎么说。(我爱爸爸和妈妈)
生:我爱爸爸,我爱妈妈。
师:能把下面两句话合成一句话吗?(我喜欢语文课,我喜欢数学课。)
师:中国语言真神奇,同样的意思,可以一句话来说,也可以两句话来说。而在数学中,也有类似的思考方法。今天,就让我们一起走进探索与发现(三)。
二、新授,根据两种计算方法探索形成等式。
1、出示例1,学生独立计算,然后上台板演两种不同的方法。
(市场上的苹果每千克8元,罗老师先买了6千克,又买了4千克,罗老师一共花了多少钱?)
2、读每种方法的算式,说一说每一步在算什么。
3、口答。
4、算式答案一样,用等号连接,写成一个等式。
5、生读一读等式。
6、观察这个等式,从等式中你发现了什么?
7、出示例2。这个组合图形的面积是多少平方厘米?(A长方形:长7厘米,宽5厘米;B长方形:长3厘米,宽5厘米。)
默读题目,用两种方法计算。
8、展示学生的算法。
第一个算式每一步分别在算什么?
第二个算式每一步分别在算什么?
这两个算式都在算组合图形的面积。答案相同,这两个算式也可以写成一个等式,((7+3)X5=7X5+3X5)
三、观察等式,发现规律。
1、师:下面,请大家带着这两个问题,仔细观察这两个等式。(“观察发现”)
1、等号左右两边算式有什么相同的地方?有什么不同的地方?
2、你能从乘法的意义来说明左边和右边的算式结果为什么会相等吗?
2、先独立思考,然后和四人小组的同学交流你的想法。
3、汇报。
(1)数字相同,符号相同。运算顺序不同。(运算顺序是怎样的不同)
(2)第一个等式的左边和右边都表示10个8相加是多少,第二个等式的左边和右边都表示10个5相加是多少,所以结果相同。
4、根据这些特点,你有什么发现。
生汇报自己的想法。
师:我听明白了,大家发现了这个规律:两个数的和乘一个数,等于把这两个加数分别乘这个数,再把积相加。是这个意思吧?这只是我们的猜想。(“猜想”)
你能举出一些有这样规律的例子吗?(“举例”)
5、你们在草稿本上举个例子来试试,为了方便计算和节约时间,大家可以选择小一点的数字。
6、学生汇报。
生口答,师板书学生的两个例子。
还能举出其他的例子吗?(能)刚才我们用举例的方法验证了这个猜想,在举例的过程中有没有发现结果不一样的例子。(没有)
看来这个规律是普遍存在的,在数学上,我们把这个规律叫做乘法分配律。(板书)(“得出结论”)
读一读乘法分配律。
刚才我们举了很多有这个规律的例子,这样的例子能举完吗?(不能)加上省略号。
四、得出结论,揭示课题。
用字母表示。
师:如果用a,b,c三个字母代替数字,你能表示出乘法分配律吗?
学生口答:(a+b)xc=axc+bxc
这个等式反过来也成立。学生从左往右读一次,再从右往左读一次。
师:a和b都与哪个数相乘了?(C),C就是a和b共同的乘数。
五、运用。
师:运用乘法分配律,我们来练一练。
1、判断下面各题。
(25+8)x4=25x4+8x4
(10+5)x18=10x18+5
6x(a+b)=6xa+axb
生口答,错在哪儿?
2、运用乘法分配律填一填。
师:我们来运用乘法分配律填一填。
课件出示:(10+7)x6=x6+x6
8x(125+9)=8x+8x
7x48+7x52=x(+)
学生口答,1、2题学生直接做判断。3题追问,48和52都同(7)相乘了,那么(7)就是48和52共同的乘数。
3、计算。
出示练习题:(40+4)X25 34X72+34X28
第一题:展示两种算法。比较算法,用乘法分配律,可以使计算更简便。
第二题:展示算法。
为什么大多数同学都使用乘法分配律来计算了?
小结:运用乘法分配律,可以使一些计算更简便。以后再遇到这样的题目时,我们就要先思考,是直接按题目的运算顺序算呢,还是可以用简便方法来算。
六、课堂小结
师:通过今天的学习,大家有收获吗?你学到了什么?还有其他的收获吗?
生谈谈自己的收获。
师:是的,今天我们学习了乘法分配律,利用这个规律,可以使一些计算变得更简便。在学习乘法分配律时,我们的学习方法是:先观察发现,然后猜想,再举例验证,最后得出结论。学习数学知识,可以使我们的学习和生活变得更简单。
七、回归课本,翻书阅读,完成课堂作业。
今天我们学习的内容在数学书48页和49页,同学们翻书仔细看一看。看完后在课堂本上完成今天的课堂作业49页,练一练2题的第1列和第2列
《乘法分配律》教案 篇11
教学内容:人教社教材四年级下册P26页例7
教学目标:
1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。
2、会应用乘法分配律,使某些运算简便。
3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。
教学重点:
让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。
教学难点:理解和掌握乘法分配律的推导过程。
教学设计思路:
1、通过买衣服的情境转入乘法分配律。
2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。
3、会用乘法分配律进行简单的计算。
教学过程:
一、创设情境,生成问题
1、生活引入,激发兴趣
今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。
出示:两件上衣(价格分别是100元、80元)
两条裤子(价格分别是70元、50元)
2、提出问题,独立思考
出示:(1)一共有几种搭配方法?
(2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。
二、探索交流,建构规律
1、生选择搭配方案并计算。
2、组内研讨,并出示:
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?
3、汇报交流:
(1)探讨第一种方案。
师:哪一个同学想先来给项老师推荐他的方案?
(预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5
B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)
(2)探讨第二种方案。
(3)探讨第三种方案。
(4)探讨第四种方案。
教师板书:
一套 ×套数 = 5件上衣 5条裤子
(150 100)× 5 = 150×5 100×5
(150 70)× 5 = 150×5 70×5
(100 100)× 5 = 100×5 100×5
(100 70)× 5 = 100×5 70×5
4、生列举例子。
(1)出示:活动要求
A、写出三个这个的算式。
B、交流:你怎么来说明你写的算式左右两边是相等的?
(2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。
5、用字母表示乘法分配律。
问:谁能用一个算式表示全班所有同学的算式?
6、学生归纳概括:乘法分配律的意义。
三、巩固应用,训练提升
1、在□里填上适当的数。
(15 20)×12=□×12 □×12
25×(4 9)=□×4 □×9
8×(10 5)=□×□ □×□
30×24=30×□ 30×□
2、把左右两边相等的算式用线连接起来。
48×12 52×12 15×18 26×18
(15 18)×26 25×40 25×4
25×(40 4) (48 52)×12
14×(45-5) 11×4 25×4
(11×25)×4 14×45-14×5
四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?
《乘法分配律》教案 篇12
教材分析
乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节 。
教学目标
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
3、会用乘法分配律进行一些简便计算
重点难点
1、 指导探索乘法分配律。
2、 发现并归纳乘法分配律。
方法指导
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。
预设流程
激趣导入
(约3分钟)
一、创设情境,提出问题:
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?
2、学生思考:(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。
(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)
自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨:
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说,你推荐的理由。
(3)说说你推荐的方案,需要花多少钱?你是怎么算的?
合作交流
(约10分钟)
2、汇报交流:
师:哪一个同学想先来给老师推荐他的方案?
师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢?
生尝试读等式。
(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4
B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )
3、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。
教师板书:
一套 ×4 = 4件上衣 + 4条裤子
(225+75)×4 = 225×4 + 75×4
(225+125) ×4 = 225×4 + 125×4
(175+75)×4 = 175×4 + 75×4
(175+125) ×4 = 175×4 + 125×4
精讲点拨
(约8分钟)
(二)、观察比较、猜测验证
1、观察比较
2、提出猜想。
师:观察上面的等式,左右两边的算式什么变了什么没变?
你们有什么发现?
3、举例验证。
让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?
学生汇报,教师根据汇报板书。
(三)、总结规律,概括模型
1、总结规律:
师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)
师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?
2、用字母表示:
师:用字母如何表示乘法分配律?
测评总结(约12分钟)
三、巩固应用,训练提升
1、请你根据乘法分配律填空
(12+40)×3=×3+×3
15×(40+8)=15×+15×
78×20+22×20=( + )×20
66×28+66×32+66×40=( + + ) ×40
教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。
2、火眼金睛辨对错
56×(19+28)=56×19+56×28
(18+15)×26=18×15+26×15
(11×25) ×4= 11×4+25×4
(45-5)×14 =45 ×14 -5 ×14
强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。
3、用乘法分配律计算下面各题。
(40+4)×25 39×8+39×6-4×39
4、拓展提高
你能用乘法分配律解决这道题吗?
86×101
四、说一说,今天我们研究了什么?你有什么收获
板书设计
乘法分配律
一套 ×4 = 4件上衣 + 4条裤子
(225+75)×4 = 225×4 + 75×4
(225+125) ×4 = 225×4 + 125×4
(175+75)×4 = 175×4 + 75×4
(175+125) ×4 = 175×4 + 125×4
乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。
《乘法分配律》教案 篇13
一、教学目标:
(一)知识目标。
1、过探索活动,进一步体会探索的过程和探索方法。
2、通过探索活动,发现乘法分配律,并用字母进行表示。
(二)能力目标。
1、学习过程中,培养学生的探索意识和探索精神。
2、探索、交流过程中,培养学生发现问题、提出问题的能力。
3、培养学生观察、比较、抽象、概括能力。
(三)德育目标。
体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。
二、教学重点:
理解乘法分配律。
三、教学难点:
乘法分配律的应用。
四、教学方法:
1、猜测法。
2、验证法。
五、教具准备:
课件。
六、教学过程:
(一)导课。
应用乘法结合律进行简算。
2745= 8(725) = 3425=
(二)学习新课。
1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?
2、学生汇报:有的说100块,有的说90块。
3、详细汇报
生1:我将瓷砖分成两部分,两部分的和就是瓷砖的总块数。列式是69+49=90(块)
生2 :我也发现有90块,因为有10行瓷砖,每行9块。
生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。
4、请大家观察这些例子的左右两边,有什么特点?
生1:从左到右是相同因数乘不同因数的和。
生2:从右到左是相同因数分别乘不同的因数,再将它们的积加起来。
5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C
表示三个数,你能写出乘法结合律吗?
6、(A+B)C=AC+BC叫乘法的分配律。
(三)巩固练习。
1、填一填。
35(2+5)=352+35( ) (43+25)2=( ) ( )+( )( )
2、拓展练习。
运用学的规律,将计算过程变得简便些。
201950= 632547=
(四)全课总结。
这节课,你学到了那些知识?会用乘法分配律简便运算吗?
(五)布置作业。
第49页练一练第2、3题。
- 推荐阅读:
- 《乘法分配律》教案(通用14篇)
- 《乘法分配律》教案(精选17篇)
- 乘法分配律教案(精选15篇)
- 《乘法分配律》导学案分析(精选16篇)
- 《乘法分配律》优秀公开课教案优秀(精选17篇)
- 《乘法分配律》教学反思(通用14篇)
- 乘法的初步认识教案
- 6的乘法口诀教案
- 5的乘法口诀教案
上一篇:关于房地产广告语大全 关于房地产广告下列说法正确的有
下一篇:《青蛙卖泥塘》教案
相关文章
-
无相关信息