您现在的位置是:首页 > 综合范文
数学建模的两种基本方法(精选5篇)
数学建模的两种基本方法范文第1篇
摘 要:培养初中学生的数学建模思想,有利于学生数学创新思维能力的提高,使学生应用数学知识解决实际问题的能力增强。分析培养初中学生的数学建模思想。
关键词:初中数学;建模思想;数学应用
新课标中提出,运用数学建模的思想是初中数学学习的全新方法,为学生数学能力的发展提供大的发展空间,使学生在用数学知识解决问题的过程中体会到数学的价值,增强运用数学知识解决问题的能力,提高学生数学学习的动力,从而提高初中数学教学效果。
一、数学建模内涵及其意义
数学建模是通过对实际的具体问题进行分析、概括、简化,提出解决问题的方案,再使用数学工具,列出具体运算式子并进行求解,从而使实际问题得到解决。数学建模包括以下几个步骤:对问题进行分析简化、建立模型、解答数学问题、检验答案等。初中阶段数学建模的方式主要有:方程模型、不等式模型、函数模型、几何模型等。培养学生的数学建模思想,能让学生深入掌握数学知识,较好地学会数学的基本思想,提高学生的数学知识应用能力,进而提高学生分析问题和解决问题的能力。
二、数学建模的方法
要培养学生的数学建模思想,首先要掌握数学建模的方法和步骤。
1.分析实际问题,为建模做准备。首先对实际问题进行分析,从题目中了解已知条件,并对题目包含的数量关系进行分析,根据问题的特点,确定使用数学模型要解决的问题。
2.简化实际问题,假设数学模型。对实际问题进行一定的简化,再根据问题的特点和要求以及建模的目的,对模型进行假设,找出起关键作用的因素和主要变量。
3.利用恰当工具,建立数学模型。通过建立恰当的数学式子,建立模型中各变量之间的关系式,以此完成数学模型的建立。
4.解答数学问题,找出问题答案。通过对模型中的数学问题进行解答,找出实际问题的答案。
5.还原实际问题,从而使问题解决。通过把已经解决的数学问题还原成实际问题,从而使问题得到解决。
6.根据实际意义,确定答案取舍。对于数学问题的答案,要根据实际意义来决定答案的取舍,从而使解答的数学结论有实际
意义。
三、初中数学教学中模型应用
(一)不等式模型的应用
例1.某企业库存现有A材料360 kg,B材料290 kg,打算使用A、B两种材料制作M、N两种产品共50件。生产一件M产品需使用A材料9 kg、B材料3 kg,生产一件N产品需要使用A材料4 kg、B材料10 kg,如果要生产M、N产品50件,请设计几种方案。
解析:假设生产M产品x件,则生产N产品件数为(50-x)
通过解方程得出M产品和N产品件数。x只能取30、31、32这三个数,而50-x只能取20、19、18这三个数。因此,有三个方案,方案一:生产M产品30件,N产品20件;方案二:生产M产品31件,N产品19件;方案三:生产M产品32件,N产品18件。
在本例中,将实际问题转化为一元一次不等式(组)模型,通过求解不等式,使问题得到解决。
(二)函数模型的应用
例2.让学生根据手机上网流量与费用来建立数学模型,选择适合的套餐。某移动运营商上网有两种套餐可选:第一种是每月20元、200 M流量;第二种是每月35元、500 M流量。如超过套餐流量后,则按每100 K流量0.02元收费。问:某同学每月上网需 要400 M流量,选哪种套餐更合算?
解析:建立手机收费y(元)与流量x(M)数学函数模型。套餐一函数模型:当x≤200时,y=20;当x>200时,y=20+0.2(x-200);套餐二函数模型:当x≤500时,y=35;当x>500时,y=35+0.2(x-500)。根据函数模型,当某同学每月上网流量为400 M,通过计算得出套餐一的费用是60元,套餐二的费用是35元。显然套餐二更合算。本例的数学模型是y=ax+b的一次函数。
(三)几何模型的应用
例3如图.在一条河上有一座拱形大桥,桥的跨度为37.4米,拱高是7.2米,如果一条10米宽的货船要从桥下通过,求:该条船所装货物最高不能超过几米?
解析:几何在工程上的应用非常广泛,如在航海、测量、建筑、道路桥梁设计等方面经常涉及一定图形的性质,需要建立“几何”模型,从而使问题得到解决。
此题可运用垂径定理得到:根据勾股定理可得:R=27.9米,继续运用勾股定理,所以,该船所装货物最高不超过6.7米。
本}的解答主要运用了“圆”这个几何模型。
培养学生的数学建模思想还可以运用表格、图象来建构数学模型,还可以跨学科运用数学公式构建解决问题的模型,以此培养学生数学建模的思想和建模应用能力。
参考文献:
数学建模的两种基本方法范文第2篇
1 引言
当今世界,创新取代了传统的比较优势,已经无可替代地成为国家竞争战略的基础。
因此,加强创新精神和创新能力的培养,已是世界各国 教育 改革的共同趋势,也是我国实现“科教兴国”战略的基本要求,创新教育已经成为高等教育的核心,多年来的教育实践证明,数学建模的教学与竞赛活动在高等学校的创新教育中的地位和意义已是举足轻重.
一年一度的全国大学生数学建模竞赛活动是由国家教育部高教司直接组织领导,面向全国高校,规模最大,参与院校最多,涉及面最广的一项科技竞赛活动.其宗旨是“创新意识,团队精神;重在参与,公平竞争”。自1992年举办第一届竞赛以来,参赛队数以平均每年近30%的速度增加,2006年已达到864所院校9985个参赛队的规模.正是由于数学建模竞赛活动的深入开展,它积极地推动了大学数学教学改革的开展,并已取得了显著的成果。
2 数学建模对培养学生创新能力的意义
高校作为人才培养的基地,围绕加快培养创新型人才这个主题,积极探索教学改革之路,是广大教育工作者面临的一项重要任务。正是在这种形势下,数学建模与数学建模竞赛,这个我国教育史上新生事物的出现,受到了各级教育管理部门的关心和重视,也得到了科技界和教育界的普遍关注。这主要是数学建模的教学和竞赛活动有利于人才的培养,特别是人才的综合能力、创新意识、科研素质的培养.也正因为如此,数学建模活动的实际效果正在不断的显现出来,“数学建模的人才”和“数学建模的能力”正在实际工作中发挥着积极的作用。
数学建模本身就是一个创造性的思维过程。数学建模的教学内容、教学方法以及数学建模竞赛培训都是围绕创新能力的培养这一核心主题进行的,其内容取材于实际,方法结合于实际,结果应用于实际.数学建模的教学和竞赛培训,为学生的探索性学习和研究性学习搭建了平台。数学建模的教学和竞赛,注重培养学生敏锐的观察力、 科学 的思维力和丰富的想象力,既要求学生具有丰富的知识,又要求学生具有较强的实践操作能力;既有智力和能力要求,又有良好的个性心理品质要求;既要求敢于竞争,又要求善于合作.数学建模真正体现了开发学生潜能、培养学生优秀心理品质以及积极探索态度的良好结合.在数学建模的教学与竞赛中,特别注重发挥学生的主动性、积极性、创造性、耐挫折性,特别是提倡探索精神、创造精神、批判精神、团队协作精神等.知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现.实践正在证明,数学建模的教学与竞赛活动是培养大学生创新思维和创新能力的一种极其重要的方法和途径。
3 在数学建模的教学中培养学生的创新思维
创新型人才是指具有较强的创新精神、创造意识和创新能力,并善于将创造能力化为创造性成果和产品的人才.尽管创新精神、创造意识和创新能力的培养不是一个学科或一门课程的教学所能完成的,但大量的中外教育实践充分证明,数学教育在创新型人才的培养中具有其他学科不可替代的优势和作用.因为数学中的理论和方法是人们从量的侧面研究现实世界所得到的客观 规律 ,是研究各种科学技术不可缺少的语言和工具.
而数学建模的过程则恰好是将数学中的理论和方法又重新应用于解决现实问题,即是理论来源于实践又要服务于实践的一个完美体现.这一过程高度反映了人的创新精神、创造意识和创新能力。
数学本身包含着许多重要的思想方法,比如由特殊到一般的思想、从有限到无限的思想、归纳类比的思想、倒推逆向分析思维、试探思想等,其本质都是创造性思维方法.我们在数学建模的教学过程中不刻意地去追求运算技巧和方法,而将重点放在数学思想方法的传授上,运用对数学思想方法的体会去启迪学生的创新思维,激发学生的创新欲望。
数学上的归纳和类比思维是一种非常典型的创新思维,著名的数学家拉普拉斯说过“在数学里,发现真理的主要工具和手段是归纳和类比”.而大多数数学模型的建立、修改或改进,很多时侯都是依靠这种归纳与类比思维.在寻找模型求解的算法时,也常常用类比思维,利用相似的算法加以优化和改进而得到,有时甚至可以发现新的更好的算法.
发散思维是许多科学家非常重视的一种思维形式,科学家运用发散思维获得重要发现的例子不胜枚举.我们在数学建模的教学过程中倡导学生养成发散思维的习惯,通过一些具体的建模实例,让学生感受到在科学上要敢于联想,敢于突破条条框框,敢于标新立异。
逆向思维,即“反过来想一想”。人们思考问题时常常只注重于已有的联系,沿着合乎习惯的正向顺推,但有时如果采用“倒过来”思考的逆向思维方式,往往会产生意想不到的效果.比如,2004年全国大学生数学建模竞赛A题:奥运会临时超市网点设计中的第三个问题:若有两种大小不同规模的迷你超市(Mini-Supermarket)类型供选择,给出图2中20个商区MS网点的设计方案(即每个商区内不同类型MS的个数,并满足题中三个基本要求:满足奥运会期间的购物需求、分布基本均衡、商业上盈利).在设计MS网点时为考虑满足商业上盈利这一要求,如果单从正面去考虑商业上的盈利模型,则有很多未知的因素无法确定,诸如商品种类、数量、价格、销售额等,因而无法建立模型.但若运用逆向思维,从市场需求去预测可能的盈利能力,因为市场需求量可利用前述问题中已得到的商区的人流量的分布,从而为后面的规划模型的建立与求解提供了关键性的办法。
数学建模的两种基本方法范文第3篇
关键词:数学建模思想;中职数学;教学实践
在中职学校中,数学课作为非常重要的基础必修课,数学课的学习既担负者学习数学基本知识的任务,又担负者培养学生数学思维的重要任务。由于中职学校学生的数学基础比较弱,如果在数学教学中教师引入数学建模思想,就能有效地提高教学质量。充分利用数学建模思想进行数学教学,这是对传统数学教学的一种补充,更是一种创新,这也是当前中职数学教学改革的必然发展趋势。笔者根据自己的中职数学教学实践,对中职学校数学教学中利用数学建模的思想和方法提高教学效率的必要性进行了探讨和分析,并阐述了在数学教学中利用数学建模的做法,以期对中职数学教学有所借鉴和参考。
1中职数学教学融入数学建模思想的必要性
数学建模是指通过对一些复杂的实际问题进行研究分析后,发现问题可以用一个比较确切的数学公式或语言来说明它们的规律或关系,从而把这个实际的问题转化成了一个数学的问题,我们把这个数学问题就叫做数学模型。如,零件设计、计算机程序设计、银行存款、借贷、投资收益、城市规划等许多问题都可用数学模型进行设计。为了提高中职数学的教学质量,在数学教学中融入数学建模思想,可以有效提高学生对数学知识在社会和生活中应用的重要性提高认识,让学生从单纯的数学知识学习中解脱出来,既能提高学生学习中职数学的兴趣和动力,又能降低数学学习的难度减轻学生的负担,让学生喜欢上数学学习。融入数学建模思想,能培养学生的数学应用的强烈意识,提高学生对数学知识实践运用的能力。学生掌握了数学建模方法,就可以提高理解数学概念的能力和数学问题中所包含的各种数量关系及其变化规律,学生灵活运用数学知识的能力就会提高,使学生的数学素养水平得到提高。另外,要培养学生从数学思维的视角去考虑实际问题和提高学生对实际数学问题的探究能力,要提高学生在社会生活中的交际沟通的能力,以及满足现实社会对中职学生的新的需求,要实现这些想法都需要在数学教学中引入数学建模思想。
2数学建模思想对学生能力培养的具体体现
2.1能培养学生的协调处理能力
在中职数学教学中引入数学建模思想,可以通过运用多种教学方法和手段,来让学生从学习生活中的一些实际问题,来加以认证或检验。教师可以通过学生在数学建模的过程中遇到的各种问题,来培养学生处理各种问题的能力和素质,来培养学生的各种协调能力。同时,数学建模是一种创造性的过程和活动,对培养学生的思维创新和解决问题的各种能力会有一个大的提升。比如,解决立体几何习题时,可能会遇到数学中的向量知识、三角函数等许多方面的知识,这就需要学生来综合处理这些知识点的运用和协调问题,从而培养学生的整体协调能力。
2.2能培养学生的动手实践能力
由于中职学校学生的数学基础普遍比较弱,对数学课的学习都存在害怕情绪,对数学的学习兴趣和动力也是普遍不高。如果教师在数学教学中引入数学建模的思想和做法,就能让数学教学变得容易,能降低数学教学的难度,使学生更能结合实际问题理解数学知识的概念,学生就会对数学教学不再恐惧,能提高学生对数学的兴趣和热情。数学建模思想和做法其最大的作用就是让学生在数学基本知识和在解决实际问题之间建立了一座沟通的桥梁,通过这座桥梁能提高学生的数学学习成绩和提高教学质量。
3数学建模思想在数学教学中的运用
3.1基础知识学习阶段的应用
在中职学校的数学基础知识的学习阶段中,教学方法主要采用教师讲授为主的模式。在这个阶段运用数学建模思想,更多的是应该开展进行专题教学活动,在教师的指导下进行基础知识的应用方面的学习,让学生深入理解和掌握数学的基本概念,建立一个数学基础知识的体系和结构,让学生初步接触数学建模思想的应用方式。教师在这个过程中要多与学生进行课堂互动,共同探讨既贴近学生生活又比较简单的数学应用问题,使学生初步具有把实际问题描述成数学语言的基本能力。在这个教学阶段,教师主要是帮助引导学生建立数学知识体系,初步掌握建模的基本方法。教师可设置数学建模的情境,让学生运用教学内容,明确要解决的问题,然后展开联想,让学生思考用什么方法把教学情境转化成数学模型,初步掌握建模的方法。
3.2课堂教学阶段的应用
在数学课堂的教学阶段应用数学建模,教师主要是采取一些活动,让学生积极参与活动。主要是把建模的思想展现给学生,让学生树立建模意识。教师要为学生创设实际问题的建模情境,鼓励学生积极参与,大胆探索,让学生运用所学的数学基础知识,构建模型。可以采取学生自主探究建模、师生共同建模、学生交流合作建模等形式开展建模。例如,让学生根据手机上网流量与费用来建立数学模型,以选择适合的套餐。某移动运营商上网有两种套餐可选,第一种是每月20元、200M流量;第二种是每月35元、500M流量。如超过套餐流量后,则按每100K流量0.02元收费。建立手机收费y(元)与流量x(M)数学函数模型。套餐一函数模型:当x≤200时,y=20;当x>200M时,y=20+0.2(x-200);套餐二模型:当x≤500时,y=35;当x>500M时,y=35+0.2(x-500)。根据函数模型,求某同学每月上网400M流量,选哪种套餐更合算?通过计算得出套餐一的费用是60元,套餐二的费用是35元。显然套餐二更合算。以此来培养学生数学建模应用意识。
3.3在解决实际问题中的应用
学生学会了建模思想和方法之后,教师要注重把数学建模思想应用到实际问题的解决当中,让学生亲自实践数学建模的应用。教师要根据实际问题,让学生积极建模,并对学生的建模设计方案进行科学评价,以便学生对建模方案进行修改完善。例如,可以让学生到电器商店调查平板电视的行情,然后建立平板电视成本(或售价)与时间的数学模型。可以让学生通过市场调查收集数据,对数学模型进行假设,运用数学建模思想,把实际调查数据转变成一个数学问题并建立数学关系式,利用所学数学知识对建模数学问题进行求解,并求出最佳答案。总之,对我国目前的中职数学教学而言,只要教师能有效地把数学建模思想融入到日常数学课堂教学中,提高学生的学习兴趣和热情,培养学生利用所学数学知识解决实际问题的能力,就能提高中职数学教学的质量和水平,使中职数学教学的目标更适合职业教育对人才培养的需要。
参考文献:
[1]郭欣.融入数学建模思想的高等数学教学研究[J].科技创新导报,2012,(30).
[2]胡峰华.融入数学建模思想的中职数学教学实践研究[J].才智,2015,(18).
数学建模的两种基本方法范文第4篇
关键词: 农村普通高中数学建模活动高中数学问题应对策略
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种有效的数学手段。《普通高中数学课程标准》把数学建模纳入其中,这是高中数学的一个崭新的里程碑,它正式表明数学建模进入我国高中数学。然而,不少学生在高中数学建模活动的开展过程中或多或少地遇到了一些困难。笔者在农村高中任数学教师,通过教学实践和对数学建模内容的研究,在对所教班级和其他同轨班级调查分析的基础上,就农村普通高中数学建模活动开展中存在的问题及其应对策略谈几点认识。
一、学生在数学建模活动中存在的问题
1.基础薄弱,信心不足,在数学建模活动时产生心理障碍。
由于受应试教育指挥棒的左右,在初中阶段许多教师基本上没有开展过以实际问题为背景的数学课堂活动;有些教师还认为应用题文字叙述过长,课堂效率不高,因此在教学中往往将分析探索的过程简单化。这些都直接导致了高中学生探究能力和创新思维基础的薄弱。高中数学建模中实际问题的文字叙述与初中应用题相比更加语言化,与现实生活更加贴近,而且题目比较长,其数量比较多,数量之间的关系也很分散隐蔽。所以,面对许多的非形式化题目和材料,许多学生不知所措,不知如何入手,产生了惧怕数学建模的心理。学生对数学建模的心理障碍是造成学生学建模活动困难的首要原因。
2.缺少体验,信息有限,在数学建模活动时形成认识障碍。
大多学生由于将所有精力放在学习上,所以他们参加的社会实践活动非常有限,导致对生活、生产、科技及社会活动等方面的知识知之甚少,而许多知识领域的名词术语在数学实际问题中出现的概率是相当高的,这些很陌生名词术语学生当然不知其意,因此也就无法读懂题意,更不用说正确理解题意了。例如现实生活中的利息、利润、利率、保险金、折旧率、纳税率等概念,这基本概念的含义学生很难搞清楚,所以,对涉及这些概念的题目就无法去理解,更无法去解决。
例如:某学生的父母欲为其买一台电脑售价为1万元,除一次性付款方式外,商家还提供在1年内将款全部还清的前提下两种分期付款方案(月利率为1%):
(1)购买后1个月第1次付款,过1个月第2次付款……购买后12个月第12次付款;
(2)购买后3个月第1次付款,再过3个月第2次付款……购买后12个月第4次付款。
像这样与社会综合知识联系较紧的建模问题还有很多,其背景比较新,专业术语比较多,是学生最难掌握的。总之,学生生活经验的积累量、课外知识的储备量已成为了衡量学生建模思维的标准。
3.轻视阅读,理解欠缺,在数学建模活动时形成思维障碍。
由于课业负担比较重,学生对读书的兴趣不浓,阅读文字的积极性不高,导致理解文字的能力较弱。一般情况下学生对图像和画面兴趣感较强,而对文字比较麻木,缺乏兴趣,因此造成语感比较差,对文字的感悟和理解层次也不高。特别是遇到文字较多的应用题,学生很容易产生视觉疲劳,搞不清文字意思的主次,抓不住关键词,这也成为分析和解决问题的一大困难。
许多实际问题牵涉到的数据不但很多,而且比较杂乱,学生不知道思维的起点是哪个数据,因此无法找到解决问题的切入点和突破口。他们在选择分析问题的方法上缩手缩脚,缺少大胆与灵活,没有采用多种途径尝试和寻找数量关系的主动意识和良好习惯。
信息量比较大是这道题的特点,学生如果在阅读理解时不认真细致地思考,就很难梳理清楚题目中的数量关系和不等关系。学生必须冷静分析、细心揣摩问题中的关键字词,唯有如此才能找到其中的相等关系和不等关系。
二、解决问题的策略
1.培养学生的自信心,消除心理障碍。
能有效地进行学习的基础是一个人的自信心,自信心也是一个人将来适应时展的必备的心理素质。因此,教师要在平时的教学中对学生加强实际问题的教学,使他们从社会生活的大环境中发现数学、创造数学、运用数学,并且在这一过程之中获得充分的自信心。教师在平时的教学中注重联系身边的事物,真正让学生感悟数学并体验到成功的乐趣,对于激发学生的数学兴趣,培养他们的数学应用意识及解决实际问题的自信心具有重要的意义。
2.加强解决实际问题的思维训练,掌握科学解题方法。
数学建模题的解决过程实际上包含这样的程序:(1)从实际问题中获取有效信息,排除干扰的次要的因素;(2)建立适当的数学模型;(3)应用所学的数学知识,寻找数学对象在变化过程中满足的定性和定量的规律,直至解决问题。
其中,(1)、(2)步是解建模题特有的,也是解建模题成功的关键,完成了这两步即实现了把建模题转化为“传统题”,也就走上了熟路。近几年江苏高考试卷逐渐增加了双应用题,其文字多、信息量大,数量关系复杂。对文字的阅读理解和在方法、技巧上将题归纳为高中应用题中常用模型(主要有函数模型、方程不等式模型、数列模型、排列组合模型、几何模型等),构建知识网络,做到心中有数是学生成功处理建模问题的关键。
3.加强阅读理解能力的培养,用数学思维审阅材料。
数学阅读的一大功能是促进学生语言水平和认知水平的发展,更好地掌握数学,有助于培养学生的探究能力和自学能力。从语言学习的层面讲,数学教学同样要重视数学阅读。数学教师既要培养学生阅读的能力,又要教给学生数学阅读的方法,让学生充分认识到数学阅读的意义,体验到数学阅读的裨益与乐趣,从而在利益和兴趣的驱动下,主动地进行数学阅读。
参考文献:
[1]周平珊.中学建模教学的探讨[J].现代中小学教育,2003.2.
数学建模的两种基本方法范文第5篇
关键词 数学建模 素质教育 高职高专
中图分类号:G710 文献标识码:A
素质教育是指依据人的发展和社会发展的实际需要,以全面提高全体学生的基本素质为根本目的,以尊重学生主体性和主动精神,注重开发人的智慧潜能,注重形成人的健全个性为根本特征的教育。实施素质教育的重点是培养学生具有创新精神和实践能力,造就合格的社会主义事业接班人。为此,广大教育工作者就如何向学生传授知识的同时,全面提高学生的综合素质进行着不断地探索与研究,并提出了许多解决问题的方法和思路。笔者结合多年的教学实践,认为数学建模是实施素质教育的一种有效途径。
1数学建模的内涵及数学建模竞赛的发展
数学建模是通过对现实问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的关系,然后求解该数学问题,最后在现实问题中解释、验证所得到的解的创造性过程。数学建模过程是应用数学的语言和方法解决实际问题的过程,是一个培养创新能力的过程。而数学建模竞赛就是这样的一个设计数学模型的竞赛活动。大学生数学建模竞赛最早于1985年在美国出现。1989年我国学生开始参加美国的数学建模竞赛,1992年我国组织举办了10个城市的大学生数学建模联赛,1994年起开始主办全国大学生数学建模竞赛,每年一次。十几年来,全国大学生数学建模竞赛规模飞速发展,参赛校数从1992年的79所增加到2012年的1284所院校,参赛队数从1992年的314队增加到2012年的21219个队(其中本科组17741队、专科组3478队),63600多名大学生报名参加本项竞赛。数学建模竞赛已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。从以上数据来看,参加数学建模活动的主要是本科学生,但是专科院校的学生近几年参加竞赛的增长速度还是很快的。本文通过分析数学建模的意义、方法和步骤,结合高校素质教育的主要内容,探讨数学建模在高校的素质教育中所起的作用。
2数学建模对高职院校大学生素质能力的培养作用
2.1数学建模有利于培养学生的创造能力和创新意识
数学建模问题通常是从生产、管理、社会、经济等领域中提出的原始实际问题,将这些问题做了很少的简化,一般与实际问题十分接近。在建模时首先要确定出问题中哪些是主要因素,哪些是次要因素,做出适当的、合理的假设,使问题得到进一步简化;然后再利用适当的数学方法和知识来提炼和形成数学模型。这些题目一般没有固定的解法,也没有唯一的正确答案。一般地讲,由于所作假设不同,所使用的数学方法不同,会做出不同的数学模型,这些模型得出的结果一般也不相同,但是有可能它们都是正确的、合理的。例如,1996年全国大学生数学建模竞赛A题(可再生资源的持续开发和利用),就这一题而言,可以在合理、科学的假设前提下,利用微分方程建立鱼群演变规律模型;也可以建立可持续捕捞条件下的总产量最大的优化模型;还可以建立制约各种年龄的鱼的数量的微分方程和连结条件,然后采用迭代搜索法处理,它给学生留下了极大的发挥空间,任凭学生去创造和创新。评阅答卷时教师对具有创造性和创新意义的在评定等级上还可给予倾斜。因此,数学建模是一种培养学生创造能力和创新精神的极好方式,其作用是其它任何课堂教学无法替代的。
2.2数学建模有利于培养和提高学生的自学能力和使用文献资料的能力
数学建模所需要的知识,除了与问题相关的专业知识外,还必须掌握诸如微分方程、数学规划、计算方法、计算机语言、应用软件及其它学科知识。它是多学科知识、技能和能力的高度综合。宽泛的学科领域和广博的技能技巧是学生原来没有学过的。在建模培训中,也不可能将所有可能用到的知识都讲到。在模拟竞赛中,教师只是启发式地介绍一些相关的数学知识和方法,然后学生围绕需要解决的实际问题广泛查阅相关的资料,从中吸取自己所需要的东西。而在正式的建模比赛中,一个参赛队的3名同学将不能与其他任何人交流,包括指导老师和其他参赛队员。当他们拿到问题时,或许这个问题对他们来说非常陌生,这时,他们只能通过自学和内部讨论,在书籍资料,或是网上资料中查找相关知识,或者查找类似的问题,从中得到启发和借鉴,这种锻炼可以大大提高学生自觉使用资料的能力。而这两种能力恰恰是学生今后在工作和科研中所需要的,他们可以靠这两种能力不断地扩充和提高自己。
2.3数学建模有利于培养学生的组织协调能力
建模比赛是以3人组成一队一起参加的,这样设置的初衷就是为了建立队员之间的相互信任,从而培养队员的协作能力。比赛要求参赛队在3天之内对所给的问题提出一个较为完整的解决方案,这么短的时间内仅仅依靠一两个人的“聪明才智”是很难完成的,只有合3人之力,才能顺利给出一个较好的结果来,而且要给出一份优秀的解决方案,创新与特色是必不可少的。因此3人在竞赛中既要合理分工,充分发挥个人的潜力,又要集思广益,密切协作,形成合力,也就是要做个“人力资源”的最优组合,使个人智慧与团队精神有机地结合在一起。因此数学建模可以培养同学的合作意识,相互协调、、取长补短。认识到团队精神和协调能力的重要性对于即将面临就业选择的莘莘学子来说无疑是有益的,以至对他们一生的发展都是非常重要的。
2.4数学建模有利于培养和提高学生的计算机应用能力
应用计算机解决建模问题,是数学建模非常重要的环节。其一,可以应用计算机对复杂的实际问题和繁琐的数据进行技术处理,若用手工计算来完成其难度是可想而知的;同时也可用计算机来考察将要建立的模型的优劣。其二,一旦模型建立,还要利用计算机进行编程或利用现成的软件包来完成大量复杂的计算和图形处理。或者利用计算机对大量数据进行统计分析,这些工作,没有计算机的应用,想完成数学建模任务是不可能的。例如,2012年全国大学生数学建模竞赛题C(脑卒中发病环境因素分析及干预),它需要借助计算机对大量数据进行筛选、统计。根据统计结果的分析,得出发病率与气温、气压、相对湿度间的关系。因此,数学建模活动对提高学生使用计算机及编程能力是不言而喻的。
2.5可以增强大学生的适应能力
在知识经济时代,知识更新速度不断加快,如果思维模型和行为方式不能与信息革命的要求相适应,就会失掉与社会同步前进的机会。如今市场对人才的要求越来越高,人才流动、职业变化更加频繁,一个人在一生中可能有多次选择与被选择的经历。通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题,如何进行分析、推理、概括以及如何利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论以后到哪个行业工作,都能很快适应需要。
如上所述,开展数学建模教学与参加数学建模竞赛这项活动,将有助于大学生创新能力、实践能力等能力的培养,从而有助于大学生综合素质能力的提高。此外,数学建模还可以帮助学生提高论文的写作能力、增加学生的集体荣誉感、以及提高大学生的分析、综合、解决实际问题的能力,就像很多参加过数学建模的同学常说的一句话:一次参赛,终生受益!
参考文献
[1] 李同胜.数学素质教育教学新体系和实验报告[J].教育研究,1997(6).
[2] 姜启源.数学模型[M].北京:高等教育出版社,1996.
[3] 陈国华.数学建模与素质教育[J].数学的实践与认识,2003(2).
[4] 李尚志.培养学生创新素质的探索[J].大学数学,2003(1).
[5] 江锦坡,徐镇.论高校学生实际动手能力的培养[J].高等理科教育,2000(3).
上一篇:复习计划作文(精选5篇)
下一篇:大学生调查问卷(精选5篇)
相关文章
-
无相关信息