您现在的位置是:首页 > 综合范文

七年级数学上册教案(七年级数学上册教学工作总结)

2023-10-30人围观
简介人教版七年级数学上册教案15篇
  作为一名老师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!下面是小编为大

人教版七年级数学上册教案15篇

  作为一名老师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!下面是小编为大家整理的人教版七年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

人教版七年级数学上册教案15篇

人教版七年级数学上册教案1

  一、教学目标

  1、知识与技能:

  (1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。

  (2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。

  2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。

  3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。

  4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。

  二、教学重点、难点关键

  1、教学重点:角的概念、表示方法及角度制的换算

  2、教学难点:角的表示方法、角度制的换算

  3、关键:学会观察图形是正确表示一个角的关键

  三、学情分析

  角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法

  四、教学准备

  为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。

  五、教学用具:

  量角器

  六、教学过程

  (一)引入新课

  1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。

  2提出问题:

  时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。

  学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。

  (二)活动探究,建构新知

  活动一

  角的概念

  师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:

  a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;

  b、角也可以看成由一条射线绕着它的端点旋转而成的图形。

  (学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)

  活动二

  角的表示

  师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)

  生:角的表示方法有:

  1、角的符号+三个大写字母,如:∠aob

  2、角的符号+一个大写字母,如:∠o

  (顶点处只有一个角时)

  3、角的符号+数字如:∠1

  4、角的符号+希腊字母如∠α

  师:在用这些方法表示角的时候应该注意些什么呢?

  生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。

  师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。

  (在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)

  尝试应用,反馈矫正

  师:请同学们完成下面的练习

  1、图中共有多少个角?请分别表示出来。

  c

  2、将图中的角用不同方法表示出来并填写下表

  b

  b

  ∠1

  ∠bca∠3∠4abc

  ceda

  获得积极深层次的体验,从而促进学生探究能力的发展)

  活动三

  角的度量与比较

  ab

  师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c

  1、先估测图中所示各个角的大小

  2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好

  4、对于角的比较大小,你还能有什么好的方法吗?

  生:1、∠b最大

  2、∠a=28°∠b=91°∠c=45°

  量角器的使用方法:“一对中,二合线,三读数”

  1、点b射门最好。

  2、对于角的比较大小,也可以通过叠合的方法来比较。

  (通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)

  (三)、巩固练习,迁移新知

  试一试1、如图打台球的时候,球的反射角总是等于入射角。

  请同学们估测球反弹后会撞击图中的哪一点?

  (问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)

  2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;

  (2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写

  出哪些有关的角的和与差的关系式?o

  dac

  b

  (问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)

  3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。

  (问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:

  (1)度、分、秒是常用的角的度量单位;

  (2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习

  (四)、归纳总结,系统知识

  师:本节课学习了哪些知识?

  生:学习了角的概念、角的表示、角的比较与度量,角的换算。

  师:通过本节课的实践、探索、交流与讨论,你有哪些收获?

  生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等

  (五)、布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。

人教版七年级数学上册教案2

  【教学目标】

  1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

  2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

  3、养成学生积极主动的学习态度和自主学习的方式。

  【重点难点】

  重点:认识点、线、面、体的几何特征,感受它们之间的关系。

  难点:在实际背景中体会点的含义。

  【教学准备】

  圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

  【教学过程】

  一、创设情境

  多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.

  设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.

  二、讨论(动态研究)

  课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

  观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.

  让学生举出更多的“点动成线、线动成面、面动成体”的例子。

  小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

  设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

  三、讨论(静态研究)

  教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

  让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

  四、探索

  1、课本112页观察,并回答它的问题。

  引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

  2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

  这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

  让学生自己体会并小组讨论得出点、线、面、体之间的关系。

  五、作业

  1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.

  2、阅读教科书第119页的实验与探究,并思考有关问题。

人教版七年级数学上册教案3

  学习目标:

  1.了解算术平方根的概念,会用根号表示数的算术平方根;

  2. 会用平方运算求某些非负数的算术平方根;

  3.能运用算术平方根解决一些简单的实际问题.

  学习重点:

  会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.

  学习难点:

  区别平方根与算术平方根

  掌握本章基本概念与运算,能用本章知识解决实际问题.

  【知识与技能】

  【过程与方法】

  通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中.

  【情感态度】

  领悟分类讨论思想,学会类比学习的方法.

  【教学重点】

  本章知识梳理及掌握基本知识点.

  【教学难点】

  应用本章知识解决实际与综合问题.

  一、知识框图,整体把握

  【教学说明】

  1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法.

  2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等.

  二、释疑解惑,加深理解

  1.利用平方根的概念解题

  在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.

  例1已知某数的平方根是a+3及2a-12,求这个数.

  分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.

  解得a=3.

  ∴a+3=6,2a-12=-6.

  ∴这个数是36.

  【教学说明】

  负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例.

  2.比较实数的大小

  除常用的法则比较实数大小外,有时要根据题目特点选择特别方法.

人教版七年级数学上册教案4

  【学习目标】

  1、理解什么是一元一次方程。

  2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

  【重点难点】能验证一个数是否是一个方程的解。

  1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是( )

  A.6x+6(x-2 000)=150 000

  B.6x+6(x+2 000)=150 000

  C.6x+6(x-2 000)=15

  D.6x+6(x+2 000)=15

  2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x元,根据题意,列出方程为________.

  3.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,则原正方形花圃的边长是多少?(只列方程)

  《3.1.等式的性质》同步四维训练含答案

  知识点一:等式的性质1

  1.下列变形错误的是(D )

  A.若a=b,则a+c=b+c

  B.若a+2=b+2,则a=b

  C.若4=x-1,则x=4+1

  D.若2+x=3,则x=3+2

  2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C )

  A.a=-b

  B.-a=b

  C.a=b

  D.a,b可以是任意有理

  《3.1从算式到方程》同步练习含解析

  7.解:把x=3代入方程,得:15-a=3,

  解得:a=12.

  故选B.

  根据方程解的'定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.

  本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.

  8.解:A、7x-4=3x是方程;

  B、4x-6不是等式,不是方程;

  C、4+3=7没有未知数,不是方程;

  D、2x<5不是等式,不是方程;

  故选:A.

  根据方程的定义:含有未知数的等式叫方程解答即可.数或整式

人教版七年级数学上册教案5

  教 案

  第一章 有理数

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

  夯实基础

  (1)序号为几的零件最接近标准?

  ④-(-) 0.025.

  第2课时 加法运算律

  教学目标:

  1.能运用加法运算律简化加法运算.

  2.理解加法运算律在加法运算中的作用,适当进行推理训练.

  教学重点:如何运用加法运算律简化运算.

  教学难点:灵活运用加法运算律.

  教与学互动设计:

  (一)情境创设,导入新课

  思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.

  (二)合作交流,解读探究

  计算:20+(-30)与(-30)+20两次得到的和相同吗?

  得出结论:20+(-30)=(-30)+20

  换几组数去试:得到加法交换律:a+b= (学生填).

  其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)

  计算:(1)[8+(-5)]+(-4);

  (2)8+[(-5)+(-4)].

  得出结论:加法结合律:(a+b)+c= .

  【例1】计算:

  16+(-25)+24+(-35)

  【例2】课本P20例3

  说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.

  总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.

  (三)应用迁移,巩固提高

  【例3】 利用有理数的加法运算律计算,使运算简便.

  (1)(+9)+(-7)+(+10)+(-3)+(-9)

  (2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

  (3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)

  【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.

  (1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?

  (2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

  (四)总结反思,拓展升华

  本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.

  (五)课堂跟踪反馈

  夯实基础

  1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )

  A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]

  B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]

  C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]

  D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]

  2.计算:(-2)+4+(-6)+8+…+(-98)+100.

  提升能力

  3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?

  4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.

  (1)问收工时距A地多远?

  (2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?

  第3课时 有理数的减法

  教学目标:

  1.经历探索有理数减法法则的过程,理解有理数减法法则.

  2.会熟练进行有理数减法运算.

  教学重点:有理数减法法则和运算.

  教学难点:有理数减法法则的推导.

  教与学互动设计

  (一)创设情景,导入新课

  观察温度计:

  你能从温度计看出4℃比-3℃高出多少度吗?

  学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?

  按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.

  (二)动手实践,发现新知

  观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?

  结论:减去-3等于加上-3的相反数+3.

  (三)类比探究,总结提高

  如果将4换成-1,还有类似于上述的结论吗?

  先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.

  计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,

  又因为(-1)+(+3)=2 ②,

  由①②有(-1)-(-3)=-1+(+3) ③,

  即上述结论依然成立.

  试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

  让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.

  再试:把减数-3换成正数,结果又如何呢?

  计算9-8与9+(-8);15-7与15+(-7)

  从中又能有新发现吗?

  让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.

  归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.

  减法法则:减去一个数,等于加上这个数的相反数.

  用字母表示:a-b=a+(-b).

  (在上述实验中,逐步渗透了一种重要的数学思想方法——转化)

  (四)例题分析,运用法则

  【例】计算:

  (1)(-3)-(-5); (2)0-7;

  (3)7.2-(-4.8);(4)-3-5.

  (五)总结巩固,初步应用

  总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?

  教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.

人教版七年级数学上册教案6

  教学目标

  1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数、

  2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系、

  重点

  掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数、

  难点

  识别单项式的系数和次数、

  教学过程

  一、创设情境,导入新课

  师:出示图片、

  青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:

  (1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?

  (2)t小时呢?

  二、推进新课

  (一)用含字母的式子表示数量关系、

  师:出示第54页例1、

  生:解答例1后,讨论问题,用字母表示数有什么意义?

  学生经过讨论得出一定的答案,但可能不会太规范,教师总结、

  师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)、

  师生共同完成例2,进一步体会用字母表示数的意义、

  巩固练习:第56页练习、

  (二)单项式的概念、

  师:出示问题、

  引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?

  生:通过观察、对比、讨论得出,各式都是数或字母的积、

  师:指出单项式的概念,特别地,单独的一个数或字母也是单项式、

  巩固练习:下列各式是单项式的式子是____________、

  《整式的加减》同步练习

  1、代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为?

  2、甲、乙二人一起加工零件、甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时、甲、乙二人共加工零件___个。

  《整式的加减》单元测试卷含答案

  9、已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()

  A、ab B、a+b C、10a+b D、100a+b

  【考点】列代数式、

  【分析】a放在左边,则a在百位上,据此即可表示出这个三位数、

  【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b、

  故选D、

  【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字、

  10、原产量n吨,增产30%之后的产量应为()

  A、(1﹣30%)n吨B、(1+30%)n吨C、n+30%吨D、30%n吨

  【考点】列代数式、

  【专题】应用题、

  【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可、

  【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨、

  故选B、

  【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系、

人教版七年级数学上册教案7

  教学目标和要求:

  1.理解单项式及单项式系数、次数的概念.

  2.会准确迅速地确定一个单项式的系数和次数.

  3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

  4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

  教学重点和难点:

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.

  教学过程:

  一、复习引入:

  1、列代数式

  (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)

  2、请学生说出所列代数式的意义.

  3、请学生观察所列代数式包含哪些运算,有何共同运算特征.

  由小组讨论后,经小组推荐人员回答,教师适当点拨.

  (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

  二、讲授新课:

  1.单项式:

  通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,

  如a,5.

  2.练习:判断下列各代数式哪些是单项式?

  (1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.

  (加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

  3.单项式系数和次数:

  直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以

  四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.

  单项式的系数:单项式中的数字因数叫做这个单项式的系数.

  单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.

  4.例题:

  例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b

  答:①不是,因为原代数式中出现了加法运算;

  ②不是,因为原代数式是1与x的商;

  ③是,它的系数是π,次数是2;

  ④是,它的系数是-,次数是3.

  例2:下面各题的判断是否正确?

  ①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;

  ④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.

  答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确

  强调应注意以下几点:

  ①圆周率π是常数;

  ②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;

  ③单项式次数只与字母指数有关.

  5.游戏:

  规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.

  (学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)

  三、课堂小结:

  ①单项式及单项式的系数、次数.

  ②根据教学过程反馈的信息对出现的问题有针对性地进行小结.

  ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.

  教学后记:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.

人教版七年级数学上册教案8

  【学习目标】

  1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;

  2、能由实物形状想象出几何图形,由几何图形想象出实物形状;

  3、能识别一些简单几何体,正确区分平面图形与立体图形。

  【重点难点】

  识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

  【导学指导】

  一、知识链接

  同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。

  二、自主探究

  1、几何图形

  (1)仔细观察图4、1—1,让同学们感受是丰富多彩的图形世界;

  (2)出示一个长方体的纸盒,让同学们观察图4、1—2回答问题:

  从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?

  我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。

  注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。

  2、立体图形

  思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?

  长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

  想一想

  生活中还有哪些物体的形状类似于这些立体图形呢?

  思考:课本118页图4、1—4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。

  3、平面图形

  平面图形的概念

  线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

  思考:课本118页图4、1—5的图中包含哪些简单的平面图形?

  请再举出一些平面图形的例子。

  长方形、圆、正方形、三角形、……。

  思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?

  立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;

  立体图形中某些部分是平面图形。

  《4、1、2点、线、面、体》同步四维训练

  知识点一:几何体的构成

  1、下列结论正确的是(C)

  ①圆柱由3个面围成,这3个面都是平面;

  ②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;

  ③球仅由1个面围成,这个面是平面;

  ④正方体由6个面围成,这6个面都是平面、

  A、①②B、②③C、②④D、①④

  《4、1、2点、线、面、体》同步练习含解析

  一、单选题(共12题;共24分)

  1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的

  A、正方形

  B、等腰三角形

  C、圆

  D、等腰梯形

  2、下面现象能说明“面动成体”的是

  A、旋转一扇门,门运动的痕迹

  B、扔一块小石子,小石子在空中飞行的路线

  C、天空划过一道流星

  D、时钟秒针旋转时扫过的痕迹

  3、下列说法中,正确的是

  A、棱柱的侧面可以是三角形

  B、四棱锥由四个面组成的

  C、正方体的各条棱都相等

  D、长方形纸板绕它的一条边旋转1周可以形成棱柱

人教版七年级数学上册教案9

  教学目标:

  1.了解正数与负数是实际生活的需要.

  2.会判断一个数是正数还是负数.

  3.会用正负数表示互为相反意义的量.

  教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

  教学难点:负数的引入.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

  想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

  活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

  讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

  总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示.

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

  【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

  A.3B.-3C.-2.5D.-7.45

  【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

  1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期日一二三四五六

  (元)+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.

  2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

  (1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

  (五)课堂跟踪反馈

  夯实基础

  1.填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

  (2)如果4年后记作+4年,那么8年前记作年.

  (3)如果运出货物7吨记作-7吨,那么+100吨表示.

  (4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

  2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

  (六)课时小结

  1.与以前相比,0的意义又多了哪些内容?

  2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

人教版七年级数学上册教案10

  单元教学内容

  1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

  引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

  2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

  (1)数轴能反映出数形之间的对应关系

  (2)数轴能反映数的性质、

  (3)数轴能解释数的某些概念,如相反数、绝对值、近似数

  (4)数轴可使有理数大小的比较形象化

  3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

  4、正确理解绝对值的概念是难点

  根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

  (1)任何有理数都有唯一的绝对值

  (2)有理数的绝对值是一个非负数,即最小的绝对值是零

  (3)两个互为相反数的绝对值相等,即│a│=│-a│

  (4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

  (5)若│a│=│b│,则a=b,或a=-b或a=b=0

  三维目标

  1、知识与技能

  (1)了解正数、负数的实际意义,会判断一个数是正数还是负数

  (2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解

  (3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值

  (4)会利用数轴和绝对值比较有理数的大小

  2、过程与方法

  经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法

  3、情感态度与价值观

  使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言

  重、难点与关键

  1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值

  2、难点:准确理解负数、绝对值等概念

  3、关键:正确理解负数的意义和绝对值的意义

  课时划分

  1、1 正数和负数 2课时

  1、2 有理数 5课时

  1、3 有理数的加减法 4课时

  1、4 有理数的乘除法 5课时

  1、5 有理数的乘方 4课时

  第一章有理数(复习) 2课时

  1、1正数和负数

  第一课时

  三维目标

  一、知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

  二、过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性

  三、情感态度与价值观

  培养学生积极思考,合作交流的意识和能力

  教学重、难点与关键

  1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2、难点:正确理解负数的概念。

  3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪、

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量。

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

  六、巩固练

  课本第3页,练习1、2、3、4题

人教版七年级数学上册教案11

  一:说教材:

  1教材的地位和作用

  本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

  3教育目标

  (1)、知识与能力

  ①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

  ②培养学生的观察能力、分析能力和运算能力。

  (2)、过程与方法

  培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

  (3)、情感态度价值观

  通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

  4教学重点和难点

  重点和难点是如何利用有理数列式解决实际问题及正确而

  合理地进行计算。

  二:说教法

  鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

  三:说学法指导

  本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

  四:师生互动活动设计

  教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

  五:说教学程序

  (课本36页)例9:某公司去年1~3月份平均每月亏损1。5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1。7万元,11~12月份平均每月亏损2。3万元,这个公司去年盈亏情况如何?

  师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

  1全年哪几个月是亏损的?哪几个月是的盈利的?

  2各月亏损与盈利情况又如何?

  3如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?

  盈利多少?

  6你能将亏损情况与盈利情况用算式列出来吗?

  (5)通过算式你能说出这个公司去年盈亏情况如何吗?

  【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。

  【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。

  (三):归纳小结

  今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

  六:说板书设计

  板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

人教版七年级数学上册教案12

  教学目标:

  知识与能力

  能正确运用角度表示方向,并能熟练运算和角有关的问题。

  过程与方法

  能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

  情感、态度、价值观

  能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

  教学重点:方位角的表示方法。

  教学难点:方位角的准确表示。

  教学准备:预习书上有关内容

  预习导学:

  如图所示,请说出四条射线所表示的方位角?

  教学过程;

  一、创设情景,谈话导入

  在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

  二、精讲点拔,质疑问难

  方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

  三、课堂活动,强化训练

  例1如图:指出图中射线OA、OB所表示的方向。

  (学生个别回答,学生点评)

  例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

  (小组讨论,个别回答,教师)

  例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

  (教师分析,一学生上黑板,学生点评)

  四、延伸拓展,巩固内化

  例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

  (1)请按比例尺1:000画出图形。

  (独立完成,一同学上黑板,学生点评)

  (2)通过测量计算,确定船航行的方向和进度。

  (小组讨论,得出结论,代表发言)

  五、布置作业、当堂反馈

  练习:请使用量角器、刻度尺画出下列点的位置。

  (1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

  (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

  (3)点C在点O的西北方向上,同时在点B的正北方向上。

  作业:书P1407、9

人教版七年级数学上册教案13

  【学习目标】:

  1、掌握正数和负数概念;

  2、会区分两种不同意义的量,会用符号表示正数和负数;

  3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

  【重点难点】:正数和负数概念

  【教学过程】:

  一、知识链接:

  1、小学里学过哪些数请写出来:

  2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

  3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

  二、自主学习

  1、正数与负数的产生

  (1)、生活中具有相反意义的量

  如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

  (2)负数的产生同样是生活和生产的需要

  2、正数和负数的表示方法

  (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

  (2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

  (3)阅读P2的内容

  3、正数、负数的概念

  1)大于0的数叫做 ,小于0的数叫做 。

  2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【课堂练习】:

  1. P3第1,2题(直接做在课本上)。

  2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

  3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

  则正数有_____________________;负数有____________________。

  4.下列结论中正确的是 ????????????????( )

  A.0既是正数,又是负数

  C.0是最大的负数

  【要点归纳】:

  正数、负数的概念:

  (1)大于0的数叫做 ,小于0的数叫做 。

  (2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【拓展训练】:

  1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

  2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

  其中最高处为_______地,最低处为_______地.

  3.“甲比乙大-3岁”表示的意义是______________________。

  4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

  【课后作业】P5第1、2题

人教版七年级数学上册教案14

  教学目标

  【知识与能力目标】

  1、巩固理解有理数的概念;

  2、掌握数轴的意义及构成特点,明确其在实际中的应用;

  3、会用数轴上的点表示有理数。

  【过程与方法目标】

  【情感态度价值观目标】

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  教学重难点

  【教学重点】

  数轴的意义及作用。

  【教学难点】

  数轴上的点与有理数的直观对应关系。

  课前准备

  《数学》人教版七年级上册,自制课件

  教学过程

  一、探索新知(投影展示)

  问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

  学生结合上述问题分组讨论,明确以下问题:

  1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

  2、举例说明生活中类似的事例;

  3、什么叫数轴?它有哪几个要素组成?

  4、数轴的用处是什么?

  5、你会画数轴吗并应用它吗?

  “问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

  结论:正数、0和负数可以用一条直线上的点表示出来。

  3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

  共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

  不同点:温度计是竖直的,方向感不直观。

  4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

  (1)数轴的构成三要素:原点、方向、单位长度;

  (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

  5、归纳

  (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

  (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

  二、例题分析

  例1.先画出数轴,然后在数轴上表示下列各数:

  -1、5,0,-2,2,-10/3

  例2、数轴上与原点距离4个长度单位的点表示的数是。

  三、巩固训练

  课本p10练习

  自我检测

  (1)数轴的三要素是;

  (2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

  (3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

  (4)如图,a、b为有理数,则a0,b0,ab

  课堂小结

  (1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

  (2)数轴的三要素:原点、正方向、单位长度。

  (3)数学思想:数形结合的思想。

  五、作业

  1、课本14页习题1、2

  2、完成“自我检测”

  3、个性补充

  ⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

  ⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出-5和+5之间的所有整数。

人教版七年级数学上册教案15

  教学目标

  1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

  2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

  重点、难点

  重点:探索并理解平移的性质.

  难点:对平移的认识和性质的探索.

  教学过程

  一、引入新课

  1.教师打开幻灯机,投放课本图5.4-1的图案.

  2.学生观察这些图案、思考并回答问题.

  (1)它们有什么共同的特点?

  (2)能否根据其中的一部分绘制出整个图案?

  3.师生交流.

  (1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.

  《5.4平移》同步讲义练习和同步练习

  1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为   .

  2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为   cm2.

  3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是   .

  《5.4平移》同步测试卷含答案

  1. 将图形平移,下列结论错误的是( )

  A.对应线段相等

  B.对应角相等

  C.对应点所连的线段互相平分

  D.对应点所连的线段相等

  解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.

  12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )

  A.轴对称 B.平移 C.旋转 D.平移和旋转

  解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.

文章评论

    共有条评论来说两句吧...

    用户名:

    验证码:

点击排行

关注微信