
1、△ACB ≌ NMR,△DEF ≌ △QOP. 2、在△ABC和△CDA中, ∵AB = CD, ∠BAC= ∠DCA, AC = CA, ∴△ABC ≌ △CDA(SAS). 3、∵AB ⊥ CD,∠ABC = ∠DBE = 90°.又 AB = DB,BC = BE, ∴△ABC ≌△DBE(SAS). 4、(1) ∵AD = AE, ∠1 = ∠2, AO = AO, ∴△AOD ≌ △AOE( SAS). (2) ∵AC = AB,∠1 = ∠2, AO = AO, ∴△AOC ≌ △AOB( SAS). (3) ∵AB = AC,∠BAD = ∠CAE,AD = AE,∴△ABD ≌△ACE( SAS).1、∵ AD是△ABC的中线, ∴ BD = CD.又∠BDN = ∠CDM, DN = DM, ∴ △BDN ≌ △CDM( SAS). 2、∵ AD是△ABC的中线, ∴BD = CD. ∵ AD ⊥ BC, ∴∠ADB = ∠ADC = 90°.在△ABD和 △ACD中, ∵AD = AD,∠ADB = ∠ADC, BD = CD, ∴△ABD ≌ △ACD(SAS). ∴ AB = AC. 3、在△ABC和△DEF中, ∵AB = DE, ∠B = ∠E, BC = EF, ∴△ABC ≌ △DEF(SAS). ∴ ∠ACB = ∠DFE. ∵∠ACF + ∠ACB = ∠DFC + ∠DFE = 180°, ∴ ∠ACF = ∠DFC. ∴ AC ∥ DF. 4、(1) 利用(SAS)证明; (2) 共可画14条.1、∵ AB ∥ DC,AD ∥ BC, ∴ ∠BAC = ∠DCA,∠BCA = ∠DAC. 在△ABC和△CDA中, ∵∠BAC = ∠DCA,AC = CA, ∠BCA = ∠DAC, ∴ △ABC ≌ △CDA(ASA). ∴ AB = DC, AD = BC. 2、在△ABE和△ACD中, ∵∠A = ∠A,AB = AC,∠B = ∠C, ∴ △ABE ≌ △ACD(ASA). ∴ AD = AE. ∴ AB - AD = AC - AE.即DB = EC. 3、∵ ∠3 + ∠AOB = ∠4 + ∠AOC = 180°,∠3 = ∠4, ∴∠AOB = ∠AOC.在△AOB和△AOC中, ∵ ∠1 = ∠2, AO = AO,∠AOB = ∠AOC, ∴ △AOB ≌ △AOC(ASA). ∴ OB = OC.