您现在的位置是:首页 > 心得体会

高中数学教学设计 高中数学教案【精选12篇】

2025-03-03人围观
简介作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。教案要怎么写呢?高中数学教学设计 1教学目标(1)理解四种命题的概念;(2)理解四种命题之间的相互关

作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。教案要怎么写呢?

高中数学教学设计 1

教学目标

(1)理解四种命题的概念;

(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

(3)理解一个命题的真假与其他三个命题真假间的关系;

(4)初步掌握反证法的概念及反证法证题的基本步骤;

(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.

教学重点和难点

重点:四种命题之间的关系;难点:反证法的运用.

教学过程设计

第一课时:四种命题

一、导入新课

【练习】1.把下列命题改写成“若p则q”的形式:

(l)同位角相等,两直线平行;

(2)正方形的四条边相等.

2.什么叫互逆命题?上述命题的`逆命题是什么?

将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.

如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.

上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.

值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:

(1)若同位角相等,则两直线平行;

(2)若一个四边形是正方形,则它的四条边相等.

设计意图:

通过复习旧知识,打下学习否命题、逆否命题的基础.

二、新课

【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.

【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

学生活动:

口答:若一个四边形不是正方形,则它的四条边不相等.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.

若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.

【板书】原命题:若p则q;

否命题:若┐p则q┐.

【提问】原命题真,否命题一定真吗?举例说明?

学生活动:

讲论后回答:

原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.

原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.

由此可以得原命题真,它的否命题不一定真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.

教师活动:

【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

学生活动:

讨论后回答

【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.

教师活动:

【提问】原命题“正方形的四条边相等”的逆否命题是什么?

学生活动:

口答:若一个四边形的四条边不相等,则不是正方形.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.

原命题是“若p则q”,则逆否命题为“若┐q则┐p.

【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真.

教师活动:

【提问】原命题的真假与其他三种命题的真

假有什么关系?举例加以说明?

【总结】1.原命题为真,它的逆命题不一定为真.

2.原命题为真,它的否命题不一定为真.

3.原命题为真,它的逆否命题一定为真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.

教师活动:

三、课堂练习

1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

学生活动:笔答

教师活动:

2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

学生活动:讨论后回答

设计意图:

通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.

教师活动:

略。

高中数学单元教学设计 2

【教学目标】

1、 知识与技能:

(1)掌握圆的标准方程。

(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。

(3)会判断点与圆的位置关系。

2、 过程与方法:

(1)进一步培养学生用代数方法研究几何问题的能力。

(2)加深对数形结合思想的理解和加强待定系数法的运用。

3.情感、态度与价值观:

(1)培养学生主动探究知识、合作交流的意识。

(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。

【学情分析】

对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。

【重点难点】

重点:圆的标准方程和圆的标准方程特点的明确。

难点:会根据不同的条件写出圆的标准方程。

【教学过程】

第一学时 评论(0) 教学目标

教学活动 活动1【导入】新闻联播片段

全党同志与全国各族人民紧密团结在

请结合数学中圆知识,谈谈你对这句话的理解?

活动2【讲授】问题1.

在直角坐标系中,以A (a,b)为圆心,r为半径的圆上的动点M(x,y) 满足怎样的关系式?

活动3【活动】想一想!

圆心在坐标原点,半径长为r的圆的方程是什么?

活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:

(x-2)2 +y=8;

(x-2)2-y2=8;

(2x-2)2+y2=8;

(x-2)2+y2=0;

(x-2)2+y2=a;

(2x-2)2+(2y-4)2=8。

答案:都不是,第6个可以化为圆的标准方程。

活动5【活动】再试一下!

圆(x1)2+(ay2)2=1a 的圆心坐标和半径分别是什么?

答案:圆心坐标为(1,—2),半径是 √2

活动6【活动】问题2.

要写出圆的标准方程,只需知道圆的哪些量?

怎样判断一点是否在一个圆上?

学生回答,教师点评。

活动7【活动】例1

写出圆心为A(2, -3),半径长为5的圆的方程,并判断点M1(5,7),M2((√5,1) 是否在这个圆上。

学生回答,教师点评后,学生阅读教科书上本题解法。

活动8【活动】探究

你能判断点M2在圆内还是在圆外吗?

学生回答,教师点评。

点与圆心距离比半径大等价于点在圆外。

点与圆心距离比半径小等价于点在圆内。

点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。

活动9【讲授】解题收获

1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。

2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!

例2 △ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2, -8),求它的外接圆的方程。

师:△ABC的外接圆的圆心简称什么?

学生回答

师:△ABC的外心是什么的交点?

学生回答

师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。

学生阅读教材例2解法。

师:提示:方程组中

(1) (2)得到什么?

(1) (3)得到什么?

然后,怎样就可以求出圆心坐标和半径。

活动11【讲授】解题收获

先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。

活动12【活动】动手折一折

请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?

学生回答过程。

把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。

师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。

活动13【活动】Let’s try

例3 已知圆心为C的圆经过点A(1,1)和B(2, -2),且圆心C在直线m:x - y+1=0 上,求圆心为C的圆的标准方程。

由学生阅读例3,学生总结解题步骤。

活动14【讲授】解题收获

由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。

活动15【活动】小结

一个方程

三种方法

一种思想

活动16【讲授】作业布置

作业:教材P124习题A组第2题和第3题。

课下探究:

(1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多, 请试着找出来,并和其他同学交流。

(2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?

活动17【导入】结束语

圆心半径确定圆,

待定系数很普遍;

大家站在同一圆,

彰和谐平等友善;

半径就像无形线,

把大家心聚一点;

垂直平分折中线,

就能折出同心愿;

中国腾飞之梦圆。

活动18【测试】课堂测试

1.圆C:(x2)2+(y+1)2=3 的圆心坐标为( )

A(2,1) B(2,—1) C(—2,1) D(—2,—1)

2.以原点为圆心,2为半径的圆的标准方程是( )

A x2+y2=2 B x2+y2=4

C (x2)2+(y2)2=8 D x2+y2=√2

3 圆心为(1,1)且与直线x+y=4 相切的圆的方程是( )

A (x1)2+(y1)2=2 B (x1)2+(y1)2=4

C (x+1)2+(y+1)2=2 D (x+1)2+(y+1)2=4

4 圆A:(ax+2)2+y2=a+3 ,则此圆的半径为______________。

5 已知一个圆的圆心在点C(—3,—4),且经过原点。

(1)求该圆的标准方程;

(2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。

6. 已知△AOB的顶点坐标分别是A(8,0), B(0,6),O(0,0),求△AOB外接圆的方程。

7 求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0 上的圆方程

参考答案:1 B 2 B 3 A 4 2或√2

5 (1) (x+3)2+(y+4)2=25

(2)M在圆内,N在圆上,P在圆外。

6 (x4)2+(y3)2=25 。

7 (x1)2+(y1)2=4

高中数学教学设计范例 3

一、概述

教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

二、教学目标分析

1、 知识目标

1)

2) 掌握等比数列的定义 理解等比数列的通项公式及其推导

2、能力目标

1)学会通过实例归纳概念

2)通过学习等比数列的通项公式及其推导学会归纳假设

3)提高数学建模的能力

3、情感目标:

1)充分感受数列是反映现实生活的模型

2)体会数学是来源于现实生活并应用于现实生活

3)数学是丰富多彩的而不是枯燥无味的

三、教学对象及学习需要分析

1、 教学对象分析:

1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

2)对归纳假设较弱,应加强这方面教学

2、学习需要分析:

四。 教学策略选择与设计

1、课前复习

1)复习等差数列的概念及通向公式

2)复习指数函数及其图像和性质

2、情景导入

高中数学教学设计 4

一、学习目标与任务

1、学习目标描述

知识目标

(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

能力目标

(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

(B)通过知识的再现培养学生的创新能力和创新意识。

(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

德育目标

让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

2、学习内容与学习任务说明

本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

学习重点:圆锥曲线的第一定义和统一定义。

学习难点:圆锥曲线第一定义和统一定义的应用。

明确本课的。重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

二、学习者特征分析

(说明学生的学习特点、学习习惯、学习交往特点等)

l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

三、学习环境选择与学习资源设计

1.学习环境选择(打√)

(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

(6)其它

2、学习资源类型(打√)

(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

(5)案例库(6)题库(7)网络课程(8)其它

3、学习资源内容简要说明

(说明名称、网址、主要内容等)

《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)

用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。

四、学习情境创设

1、学习情境类型(打√)

(1)真实性情境(√)(2)问题性情境(√)

(3)虚拟性情境(√)(4)其它

2、学习情境设计

真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。

问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。

虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。

五、学习活动的组织

1、自主学习设计(打√并填写相关内容)

(1)抛锚式

(2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。

使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

学生活动:分析、操作、协作讨论、总结、提交结论。

教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

(3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。

使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。

教师活动:讲解例题,总结点评学生做题过程中的问题。

(4)其它

2、协作学习设计(打√并填写相关内容)

(1)竞争

(2)伙伴(√)

相应内容:圆锥曲线的第一定义和统一定义

使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

分组情况:每组三人

学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。

教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

(3)协同(√)

相应内容:圆锥曲线定义的典型应用。

使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

分组情况:每组三人。

学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。

教师活动:总结点评学生做题过程中的问题。

(4)辩论

(5)角色扮演

(6)其它

4、教学结构流程的设计

六、学习评价设计

1、测试形式与工具(打√)

(1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它

2、测试内容

教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。

学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。

(附)圆锥曲线专题网站设计分析

(1)设计思路

(A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。

(B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。

(C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。

(D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。

(E)突出和各学科的联系:如斜抛运动和行星运动等等。

(F)强调分层次的教学:

如在知识应用中的配置不同层次的例题和练习:

(2)网站导航图

高中数学教学设计 5

我先来介绍一下参加我们这次讲座的几位嘉宾,我身边这位是苏州五中的罗强校长,这边这位是苏州中学的刘华老师,那边那位是大家熟悉的首都师范大学数学系博士生导师王尚志教授。欢迎大家来到我们研讨的现场!

老师们都知道,素质教育要落实在课堂上,课堂是我们实行数学新课程的主战场,做好教学设计是我们整个高中数学新课程推进的一个关键点。那么,怎样才能做好数学的教学设计呢?我们问过一些老师,大家感觉有些疑惑,比如说有的老师们认为:教学设计是不是就是备备课,写好一个教案、做一个课件,是不是这样?我们想听听来自江苏的老师怎么看这个问题?

罗强:我来谈谈自己对教学设计理论的学习和实践过程中的一些体会。以前我们在教学实践中往往把教学设计变成一种简单的教案设计,但实际上这只是一种经验型的教学设计,没有上升为科学型的教学设计。其实,国际上对教学设计的研究已经进行多年,提出了许多思想、理论、案例,教学设计已?

教学设计理论的发展基本上经历了两个阶段:第一个阶段是突出以“教的传递策略”为中心来进行教学设计的传统教学设计理论,它更接近工程学,遵循设计的规则和程序,强调目标递进和按部就班的系统操作过程,其特点是注重目标细化,注重分层要求,注重教学内容各要素的协调。就好像我们要造一幢房子,先要把这幢房子的图纸设计出来,然后再设计一个施工的蓝图,教学就是按照这样的设计来进行实施的一个过程。

第二个阶段是突出以“学的组织方式”为中心来进行教学设计的现代教学设计理论,它的基础是信息加工理论与建构主义的学习理论,现代教学设计理论强调依据学习任务类型(如认知、情感与心理动作等)来选择教学策略,强调以问题为中心,营造一个能激活学生原有知识经验,有利于新知识建构的学习环境。其特点是问题与环境,强调创设情境,提出问题,营造问题解决的环境,突出学生的自主学习和自主探究。

按照新的教学设计的理论,我们应?

按照为学习而设计教学的理念,我觉得在教学设计时要考虑三条线索,这样实际上也就构成了教学设计的一种三维结构。第一条线索就是一种数学知识线索。因为教师进行的是学科教学;第二个线索是学生的认知线索。因为学习的主体是学生;第三个线索就是教师的教学组织线索,因为教学过程是通过教师的组织来实现的。比如第一条线索——数学知识,我觉得数学知识实际有三个形态:一是自然形态,它既存在于客观世界中间,实际上也存在于学生的头脑中间;二是学术形态,它是作为数学学科的一种知识体系而存在。那么,我们的教学就是要在数学的自然形态和学术形态的中间架一座桥梁,这座桥梁就是数学的教育形态。因此,我觉得教学设计的本质就是设计好数学的教育形态,教学设计的过程实际上就是构建数学教育形态的一个过程。

通过对教学设计理论的学习,并在实践中反思和总结,我的体会很深。有一位美国学者兰达曾经说过:教学设计是使天才能够做到的事一般人也能去做。我想对教学设计理论的学习是一个大家都要努力的目标。

张思明:刚才罗强老师从理论上分析了什么是教学设计?教学设计应该关注哪些问题?下面我们请刘华老师帮我们分析一下:在你们实验区和老师接触的实践中,你感觉到老师们在教学设计中存在着哪些主要问题?

刘华:我想解剖一个由职初教师,就是刚刚工作的青年教师所提供的一个教学案例。

我先简单介绍一下他的教学设计。这是高一函数单调性的一节起始课,在教学设计中,这个职初教师首先明确了这节课的三维目标,然后他提出了两个生活中的情境,一个情境是生活中的气温图;第二个情境是股票的价格走势图,然后引入新课。接着把函数单调性的概念介绍给学生,紧接着进入了例题讲解阶段,最后是有两个思考题。

我觉得这个教学设计大致存在这样四点比较普遍的问题:

第一个问题就是这位教师在确定课程目标的时候,比较机械地套用了新课程的理念,按照“知识技能,方法与过程,情感、态度、价值观”这样的三维目标来叙述他的本节课目标。在这些目标中,知识与技能的目标还是比较实在的,但“过程与方法”的目标以及“情感、态度、价值观”的目标就比较空洞,流于形式。其实,这位老师对教学目标并没有做深入的分析,这样的教学目标只是一个标签而已,这是第一个问题。

第二个问题是问题情境的设计。好的情境应当是兼顾生活化与数学化,股票的价格走势图这个情境离学生的生活太远,其中还包含了许多股票方面的专门知识,对函数单调性这个数学概念的反映也不够准确,作为本课的情境,不太恰当。

第三个问题就是在情境到数学概念的产生过程中,应当让学生充分体验或参与数学化的探索过程,从而建构起函数单调性这一概念。我们看到在这位教师的设计当中,他忽略了学生活动,尤其是学生思维活动这样一个环节,而是直接把概念抛给了学生。我

最后一个问题就是我们发现有很多老师认为数学教学设计主要就是习题的设计,这位教师本节课的例题、习题量非常多,而且对这些习题的要求他存在着一步到位的倾向,尤其是他最后抛出来的含字母的函数单调性的探索这个问题,我们觉得在新授课当中这个习题的要求太高了。我觉得老师们在教学设计中主要存在这样几点问题。

张思明:刘华老师谈了一个单调性的案例,对一个新教师的案例做了一个分析,分析出了我们老师在教学设计中常常出现的一些问题。那么面对这样一些问题,我们应该怎么办?我们就以这个案例为出发点,请罗强老师对函数单调性这个课题做了一个分析和再创造的'工作,在这个工作中我们可以看到如何通过教师自己的再学习、再认识,设计出一个更好、更适用于学生的教学设计。我们来看一下罗强老师的说课录像。

罗强老师的说课:各位老师大家好,我向大家汇报一下我对函数单调性的教学设计。

首先谈一下我对教学设计的认识。我觉得教学设计的根本目的是创设一个有效的教学系统,这样的教学系统不是随意出现的而是教师精心创设的,没有有效的教学设计就不可能保证教学的效果和质量。教学设计最根本的着力点是“为学习设计教学”,而不是“为教学设计学习”。

教学设计的首要任务就是明确教学目标,实际上教学目标是教学设计的灵魂和统帅,将指引后续教学设计的方向,决定后续教学设计的具体工作。在制定教学目标的时候,我觉得要把握以下几点:

第一,把握教学要求,不求一步到位。函数单调性是高中阶段刻划函数变化的一个最基本的性质。在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用运算的性质研究单调性,知道它的变化趋势;第二阶段用导数的性质研究单调性,知道它的变化快慢。那么高一我们是处在第一个阶段。第二,明确知识目标,落实隐性目标。知识目标往往就是教学的显性目标,确定知识目标的关键在于分清主次轻重,把握好教学要求。根据课程标准的要求,本节课的知识目标定位在以下三个方面:一是理解函数单调性的概念;二是掌握判断函数单调性的方法;三是会用定义证明一些简单函数在某个区间上的单调性。另外这节课的隐性目标我觉得也很重要,因为函数单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观特征到自然语言描述再到数学符号的描述的进化过程,反映了数学的理性思维和理性精神。对高一学生来讲它是一个很有价值的数学教育载体和契机。因此这节课的隐性目标应该包括让学生体验数学知识的发生发展过程,学会数学概念符号化的建构过程。根据刚才的分析,我把教学流程分成了三个阶段:第一个阶段是进行函数单调性概念的数学化过程;第二个阶段是从不同的角度帮助学生深入理解函数单调性的概念;第三个阶段是让学生学会判断,并用函数单调性的定义证明函数的单调性。

第一阶段的教学流程分成三个教学环节。第一,问题情境;第二,温故知新;第三,建构概念。具体如下:

先是创设问题情境。由老师和学生一起举出生活中描绘上升或者下降的变化规律的成语。老师可以启发一下,先说一个“蒸蒸日上”,然后和学生一起举出比如“每况愈下”,“波澜起伏”这样三种描绘不同变化的成语。然后请学生根据上述成语,给出一个函数,并在平面直角坐标系中绘制相应的函数图象。这样设计的意图是让学生结合生活体验用朴素的生活语言描绘变化规律,体会如何将文字语言转化为图形语言。

接下来是温故知新。在刚才学生绘制出的三个函数图象的基础上,我请学生观察它们变化的趋势。在刚才学生绘制的三个函数图象的基础上,再请学生用初中的语言来叙述什么叫图象呈逐渐上升的趋势,也就是“函数值随着的增大而增大”。这样设计的意图是让学生对照绘制的函数图象,用自然语言描述函数的变化规律,重温初中函数单调性的描述定义。

张思明:刚才我们看到了时骏老师的说课,下面我们来听一听嘉宾对这个说课的分析。

罗强:我还是要强调教学设计一定要注意为学习而设计教学。还是拿我刚才的这个比喻,就是教师带学生去旅游。既然是带学生去旅游,首先就要考虑我要带学生到什么地方去?然后需要考虑我怎么才能够带学生到达这个地方?然后我要确定学生是不是真的到达了这个地方?还要注意的是,作为教学的一种延伸,我觉得还应该让学生有兴趣、有能力继续他自己的旅程。我觉得这是我们教学设计要做的主要工作。

张思明:通过以上几个案例,我想老师们对于如何做教学设计有了一个初步的认识。怎样做好教学设计呢?我们也想听一听在教育指导部门的老师的一些想法,我们特别采访了江苏省教研室的董林伟主任,我们来听一听董主任关于教学设计的思考和认识。

董主任:关于设计这两个词大家应该都非常的熟悉。当人们要从事一项有目的的活动的时候,事先都要有一些设想,要进行一些规划,要进行一些设计。作为我们教学工作者来说,在开始我们的教学活动之前,我们的老师都必须做一项非常重要的工作,那就是教学设计。今天我要谈的就是关于教学设计的话题。我想就三个方面来谈谈我的一些基本想法。第一,我想先谈谈什么叫教学设计?第二,谈谈我们在教学设计过程中应该来设计一些什么?第三,在设计的过程当中我们要注意哪几点?下面我想简要的把这三个方面跟大家做一个交流。

一、关于什么叫教学设计?

所谓的教学设计就是用系统的方法对各种课程资源进行有机的整合,对教学过程中相互联系的各个部分作出整体安排的一种构想。它是一种构想,是一种整体的安排,是我们教师为将来进行的教学勾画的一些图景,它反映了我们的教师对自己未来教学的一种认识和期望。如果通俗一点来说,那么所谓的教学设计可以这样来理解,就是:你要把学生带到哪里去?你怎样把学生带到那里去?你这样做能把学生带到那里去吗?

二、在教学设计过程当中我们应该关注些什么,就是说设计一些什么?

首先,我们必须明确我们的教学目标,教学目标是我们教学根本的指向与核心的任务,是教学设计的关键。教学的目标是教学中师生所预期达到的一种教学效果和标准,因此,明确教学目标就是要明确你要把学生带到哪里去。在确定教学目标的时候,我们要关注以下的几点:第一,整体性。就是要注意这部分内容在整个高中阶段数学教学中的联系,以达到教学的一种连贯性,要正确处理好我们的近期的目标跟远期目标的相互关系。第二,在我们明确目标的时候,要关注它的全面性。新课程对数学教学的目标提出了新的一种要求,三维目标在关注知识结果的同时,更注重对过程目标的关注和对学习者——学生的关注,更关注学生获取数学知识的过程以及在学习中的经历、感受和体验。因此,教师在设计数学教学目标时,应特别注意关注新课程所提出的过程性目标。第三,我们要关注目标的现实性。确定教学目标时,应当注意它与所授课任务的实质性联系,以避免目标空洞、无法落实。我们在设计教学目标时,常见的一种状况是目标过分的大,过分的空洞,那么在落实过程中,就难以达到预设的目标。其次,我们在教学设计中要非常关注学生,要了解学生。我想,以下几个方面,至少老师在教学设计过程中应该心中有数。

第一,在数学方面学生以前做过什么?他在数学活动或者是在数学实验方面,曾经做过什么?这里我们实际上要关注的是学生的活动经验。

第二,不同的学生在思维方式上会有什么不同。实际上就是要在教学中关注我所授课的学生的特点,关注我班学生的构成,班级当中不同群体的学生在思维方面有些什么样的不同。

第三,要初步确定课堂的组织形式,就是说我这一堂课是整个班级一起学习,还是将学生分成若干个组来活动,甚至于是一种个体性的活动,包括开展一些个体性的实验活动,包括自主学习的一种活动方式。组织形式上还要关注这堂课需要利用什么模型?是否需要做适当的课件?或者准备一些相关的硬件设施。这也是我们在确定课堂组织形式是所必须要关注的。

第四,要勾勒教学的一种顺序。这个顺序当中主要包括这样几点:

第一点,应当怎样提出主题,通俗一点讲就是问题情境的创设。关于问题情境的创设,我们在相关的专题中也都提到它的重要性和一些要求。我们在勾勒教学顺序的时候,首先要关注的是怎样提出主题,这个主题应该是跟学生接近的,又要能够引起他的兴趣,又要围绕着我们的教学主题的,而且能够使得学生迅速的进入学习活动中。

第二点,就是要关注是否需要复习以前的相关知识。一堂课的教学它往往不是独立的,而是有前后联系的,因此需要考虑我在这堂课教学中是否需要复习相关的知识?

第三点,当学生对材料产生争论的时候,你准备提出怎样的探索性问题。当我们提出问题以后学生可能会产生什么样的一种思考,可能会产生一种什么样的争论?我们要了解这些争论的思维的背景,需要进行正确的引导,那么你就必须要设计好一些问题串,来引导学生围绕主题展开探索。

第四点,我们在设计教学程序的过程中要关注一下我们使用的材料,我们的课本提出了什么样的观点,使用什么样课外的材料来帮助我们的教学。

第五点,要根据学生对主题的掌握程度,准备几个可以供选择的,课堂当中要自主完成的练习,或者是课后要完成家庭作业。这些是勾勒我们整个教学流程的一些关键程序。

三、教学设计中我们应该注意的方面。

教学设计永远只是教学过程的一种预期,实际的教学活动则永远是一个谜。我们老师都有经验,同样的一个课题,同一个老师的备课,他在不同班的授课过程中都会产生不同的教学流程、教学效果。因为我们所面对的学生是不同的,是在变化的,我们的教学生成是变化的,只有当这堂课教学完成了,我们才能知道这堂课最后的结果。所以前面的教学设计只是一种预期,我们的教学设计就是要关注这样的一种变化。

因此,教学设计首先要注意它的整体性,就是说我们的教学设计不是一种片断,是一种整体的设计,它不是写在我们纸上的一种文本,而是我们教师对自己和学生所持的一种整体性的目标。其次,要注意它的可变性,没有一件事情是丝毫不差地按照计划进行的。学生的思维可能还停留在? 当活动过程受到影响时,你必须放弃你原来的教学计划,运用你对学生已有的知识的了解和更宏观的数学教学目标,去指导你的教学行动,也就是说要产生一些生成的问题。第三,要注意它创造性。我们的教师很大程度上会依赖于教材或教学参考书,以确保他们的数学教学内容符合一个内部连贯的发展框架。这种依赖有一定的好处,它能够使得我们的教学设计能够围绕着我们课程的设计来进行,但是同时也存在一些问题,就是说毕竟教材是我们课程的一种呈现,跟教学的呈现还是有着本质差别的。我们的教学设计应该是一种流动的过程,应该适合我们的学生,就像设计师设计的服装要符合你所设计的群体的特点和要求,如果考虑到个体,就要符合他的气质,符合他的整体形象。我们的教学设计也是这样,我想每个人都应该有个人设计的一种思考和魅力。

刚才谈到这几点仅供我们老师做一种参考。

张思明:各位老师,我们这一讲把教学设计中存在的问题通过几个案例给大家做了一个初步的展示。我想教学设计中的问题是一个教学实践过程中产生的问题,我们每一个老师都有自己的设计理念,都有自己设计成功或者不如意甚至失败的地方。我们希望研讨是一个互动的过程,我们真诚的期待着老师们把您们在教学设计中遇到的问题和成功的经验寄给我们,我们一起来研讨。那么这一讲就到这里,谢谢老师们的参与!

高中数学教学设计 6

重点难点教学:

1、正确理解映射的概念;

2、函数相等的两个条件;

3、求函数的定义域和值域。

教学过程:

1、使学生熟练掌握函数的概念和映射的定义;

2、使学生能够根据已知条件求出函数的定义域和值域; 3、使学生掌握函数的三种表示方法。

教学内容:

1、函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

注意:

① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x、

2、构成函数的三要素定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的'任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4、区间及写法:

设a、b是两个实数,且a

(1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];

(2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);

5、函数的三种表示方法

①解析法

②列表法

③图像法

高中数学教学设计 7

一、教材分析

数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。

二、教学目标

学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。

根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:

1、知识目标

(1)了解由有限多个特殊事例得出的一般结论不一定正确。

(2)初步理解数学归纳法原理。

(3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。

(4)会用数学归纳法证明与正整数相关的简单的恒等式。

2、能力目标

(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。

(2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。

3、情感目标

(1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。

(2)体验探索中挫折的艰辛和成功的。快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。

(3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。

三、教学重点与难点

1、教学重点

借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。

2、教学难点

(1)如何理解数学归纳法证题的严密性和有效性。

(2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。

四、教学方法

本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。

五、教学过程

(一)创设情境,提出问题

情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。

情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。

情境三:数列的通项公式为,可以求得,,,,于是猜想出数列的通项公式为。

结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不

能作为一种论证的方法。

提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数

学归纳法就是解决这一问题的方法之一。

(二)实验演示,探索解决问题的方法

1、几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必

须具备那些条件呢?(学生可以讨论,加以教师点拨)

①第一块骨牌必须倒下。

②两块连续的骨牌,当前一块倒下,后面一块必须倒下。

(启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)

教师总结:数学归纳法的原理就如同多米诺骨牌一样。

2、学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)

数学归纳法公理:(板书)

(1)(递推基础)当取第一个值(例如等)结论正确;

(2)(递推归纳)假设当时结论正确;(归纳假设)

证明当时结论也正确。(归纳证明)

那么,命题对于从开始的所有正整数都成立。

教师总结:步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不

可,这就是数学归纳法。

(三)迁移应用,理解升华

例1:用数学归纳法证明:等差数列中,为首? ①

选题意图:让学生注意:①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;

②两个步骤,一个结论缺一不可,否则结论不成立;

③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。

此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。

证明:(1)当时,等式左边,等式右边,等式①成立。

(2)假设当时等式①成立,即有

那么,当时,有所以当时等式①也成立。

根据(1)和(2),可知对任何,等式①都成立。

例2:用数学归纳法证明:当时

选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。

例3:用数学归纳法证明:当时

选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;

②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。

(四)反馈练习,巩固提高

课堂练习:用数学归纳法证明:当时

(练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学

生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。)

教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不

可少,归纳假设要用到,结论写明莫忘掉。

(五)反思总结

学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学

生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。

小结:(1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,

而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;

(2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;

(3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。

(六)作业布置

选修2-2习题2.3第1题第2题

高中数学教学设计 8

一。教材分析。

( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

想方法,都是学生今后学习和工作中必备的数学素养。

(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

二。学情分析。

( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

三。教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

四。重点,难点分析。

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法及公式应用中q与1的关系。

五。教法与学法分析。

培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的。情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

六。课堂设计

(一)创设情境,提出问题。(时间设定:3分钟)

[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点]

提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

高中数学教学设计 9

教学目标:

1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

一、创设情境,引入新课

1、复习提问

①函数的概念

②y=f(x)中各变量的意义

2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1、问题组一:

(1)这两组函数的图像有什么关系?这两组函数有什么关系?

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2、问题组二:

(1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(3)函数()的定义域与函数()的值域有什么关系?

3、渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1、(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。

2、引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3、两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

四、应用解题,总结步骤

1、(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1(2)y=x1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2、总结求函数反函数的步骤:

1、由y=f(x)反解出x=f(y)。

2、把x=f(y)中x与y互换得。

3、写出反函数的定义域。

【例3】(1)有没有反函数?

(2)的反函数是________。

(3)(x<0)的反函数是__________。

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)

(1)y=—2x3(xR)(2)y=—(xR,且x)

(3)y=(xR,且x)

2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

六、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

七、作业

习题2.4第1题,第2题

进一步巩固所学的知识。

教学设计说明

"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学优秀教学设计 10

【教学目的】

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

【重点难点】

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教 具:多媒体、实物投影仪

【内容分析】

1、集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

【教学过程】

一、复习引入:

1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2、教材中的章头引言;

3、集合论的创始人——康托尔(德国数学家)(见附录);

4、“物以类聚”,“人以群分”;

5、教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

定义:一般地,某些指定的对象集在一起就成为一个集合。

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合 记作N,

(2)正整数集:非负整数集内排除0的集 记作N*或N+

(3)整数集:全体整数的集合 记作Z ,

(4)有理数集:全体有理数的集合 记作Q ,

(5)实数集:全体实数的集合 记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数 (不确定)

(2)好心的人 (不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么 可能取的值组成集合的元素是 -2,0,2

4、由实数x,-x,|x|, 所组成的集合,最多含( A )

(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

(1) 当x∈N时, x∈G;

(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,

又∵ =且 不一定都是整数,

∴ = 不一定属于集合G

【小结】

1、集合的有关概念:(集合、元素、属于、不属于)

2、集合元素的性质:确定性,互异性,无序性

3、常用数集的定义及记法

高中数学单元教学设计 11

一、目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程图表示算法。

(五)练习P99 2

(六)作业P99 1

高中数学教学设计 12

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1、以故事形式入题

2、多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣

(二)复习提问:

1、命题“同位角相等,两直线平行”的条件与结论各是什么?

2、把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3、原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、

学生活动:

口答:

(1)若同位角相等,则两直线平行;

(2)若一个四边形是正方形,则它的四条边相等、

设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础、

(三)新课讲解:

1、命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2、把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3、把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2

(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真、

原命题真,逆否命题也真

引导学生讨论原命题的真假与其他三种命题的真

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)

否命题,若¬p则¬q;(同时否定原命题的条件和结论)

逆否命题若¬q则¬p。(交换原命题的`条件和结论,并且同时否定)

2、四种命题的关系

(1)、原命题为真,它的逆命题不一定为真、

(2)、原命题为真,它的否命题不一定为真、

(3)、原命题为真,它的逆否命题一定为真

(七)回扣引入

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,

同学们,生活中处处是数学,期待我们善于发现的眼睛

五、作业

1、设原命题是“若

断它们的真假、,则”,写出它的逆命题、否命题与逆否命题,并分别判

2、设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假、

文章评论

    共有条评论来说两句吧...

    用户名:

    验证码:

关注微信