您现在的位置是:首页 > 心得体会

等差数列教案 等差数列教案(优秀8篇)

2025-02-10人围观
简介为了帮您更好的了解等差数列教案相关内容,不器文库为您提供等差数列教案(优秀8篇),欢迎查阅参考。数学等差数列教案 篇一教学目标:1、知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过

为了帮您更好的了解等差数列教案相关内容,不器文库为您提供等差数列教案(优秀8篇),欢迎查阅参考。

数学等差数列教案 篇一

教学目标:

1、知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2、过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3、情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:

等差数列的概念及通项公式。

教学难点:

(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪

教学过程:

一、复习引入:

1、回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。

2、由生活中具体的数列实例引入

(1)。国际奥运会早期,撑杆跳高的记录近似的由下表给出:

你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?

(2)某剧场前10排的座位数分别是:

48、46、44、42、40、38、36、34、32、30

引导学生观察:数列①、②有何规律?

引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二。新课探究,推导公式

1.等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。

[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。

1.3,5,7,…… √ d=2

2.9,6,3,0,-3,…… √ d=-3

3、 0,0,0,0,0,0,……。; √ d=0

4、 1,2,3,2,3,4,……;×

5、 1,0,1,0,1,……×

在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。

2.等差数列通项公式

如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:

a2 - a1 =d即:a2 =a1 +d

a3 – a2 =d即:a3 =a2 +d = a1 +2d

a4 – a3 =d即:a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

n=a1+(n-1)d

a2-a1=d

a3-a2=d

a4-a3 =d

……

an –a(n-1) =d

将这(n-1)个等式左右两边分别相加,就可以得到

an-a1=(n-1)d

即an=a1+(n-1)d (Ⅰ)

当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。

三。应用举例

例1求等差数列,12,8,4,0,…的第10项;20项;第30项;

例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

四。反馈练习

1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。

五。归纳小结提炼精华

(由学生总结这节课的收获)

1、等差数列的概念及数学表达式。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2、等差数列的通项公式an= a1+(n-1) d会知三求一

六。课后作业运用巩固

必做题:课本P284习题A组第3,4,5题

数学等差数列教案 篇二

[教学目标]

1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一。课题引入

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

根据等差数列的定义可得:

因此等差数列的通项公式就是:,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结

1、等差数列的通项公式:

公差;

2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3、判断一个数列是否为等差数列只需看是否为常数即可;

4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3+???+100=

等差数列教案 篇三

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

1、教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2、学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

关键:

等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程

教学环节 情境设计和学习任务 学生活动 设计意图 创设情景 在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何,及未到三人复应得金几何“。

这个问题该怎样解决呢? 倾听 课堂引入 探索研究 由学生观察分析并得出答案:

在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,…

水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 观察分析,发表各自的意见 引向课题 发现规律 思考:同学们观察一下上面的这两个数列:

0,5,10,15,20,…… ①

18,15.5,13,10.5,8,5.5 ②

看这些数列有什么共同特点呢? 观察分析并得出答案:

引导学生观察相邻两项间的关系,得到:

对于数列①,从第2项起,每一项与前一项的差都等于 5 ;

对于数列②,从第2项起,每一项与前一项的差都等于 -2.5 ;

由学生归纳和概括出,以上两个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两? 通过分析,激发学生学习的探究知识的兴趣,引导揭示数列的共性特点。总结提高 [等差数列的概念]

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:

等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。 学生认真阅读课本相关概念,找出关键字。 通过学生自己阅读课本,找出关键字,提高学生的阅读水平和思维概括能力,学会抓重点。 提问:如果在 与 中间插入一个数A,使 ,A, 成等差数列数列,那么A应满足什么条件? 由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A

所以就有 让学生参与到知识的形成过程中,获得数学学习的成就感。 由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。

如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。

9是7和11的等差中项,5和13的等差中项。

看来,

从而可得在一等差数列中,若m+n=p+q

则 深入探究,得到更一般化的结论 引领学习更深入的探究,提高学生的学习水平。 总结提高 [等差数列的通项公式]

对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。

⑴、我们是通过研究数列 的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这三组等差数列的通项公式。 由学生经过分析写出通项公式:

等差数列教案 篇四

教学目标

知识与技能目标:理解等差数列的定义;会根据等差数列的通项公式求某一项的值;会根据等差数列的前几项求数列的通项公式。

过程与方法目标:通过启发、讨论、引导、边教边练边反馈的方法提高学生思考问题、解决问题的能力。

情感、态度、价值观目标:培养学生的逻辑推理能力;培养学生在探索中学习知识的精神,增强学生相互合作交流的意识。

教学重点:会求等差数列的通项公式。

教学难点:等差数列的通项公式的推导。

教学准备:课件

教学过程:

一、创设情境,引入课题

如图1所示:一个堆放铅笔的V形架的最下面

一层放1支铅笔,往上每一层都比它下面一层多放1

支,这个V形架的铅笔从最下面一层往上面排起的

铅笔支数组成数列:1,2,3,4,……

②某个电影院设置了20排座位,这个电影院从第1排起各排的座位数组成数列:

38,40,42,44,46,……

③全国统一鞋号中,成年女鞋的各种尺码(表示以cm为单位的鞋底的长度)由大到小可排列为:25,24.5,24,23.5,23,22.5,22,21.5.

师生互动,探索新知

教师:请同学们仔细观察,你发现这三组数列有什么变化规律?

生:数列①从第2项起,每一项与它的前一项的差都等于 ;

数列②从第2项起,每一项与它的前一项的差都等于 ;

数列③从第2项起,每一项与它的前一项的差都等于 ;

[设计说明:采用边教学边反馈的方式,有利于教师及时了解学生理解新知识的程度,增强学生学好数学的信心]

教师引导学生观察上面的数列①、②、③的特点。

提出问题1:上面三个数列的共同特点是什么?

学生:从第2项起,每一项与它的前一项的差都等于同一个常数。

教师:这样我们就得到了等差数列的定义。

<一>等差数列的定义:如果一个数列从它的第2项起每一项与它的前一项的差都等于同一个常数,则这个数列叫做等差数列;这个常数叫做等差数列的公差,公差通常用字母d表示。等差数列的公差d的数学表达式为: 。

基础训练:1、上面数列①的公差d= ; 数列②的公差d= ;

数列③的公差d=

[设计说明:有利于学生扫除语言与符号转换的障碍]

2、下面的数列中,哪些是等差数列?若是,求出它的公差;若不是,则说明理由。

6,10,14,18,22,……;(2)9,8,7,6,5,4,3,2;(3)3,3,3,3,3,3;(4)1,0,1,0,1,0,1,0.

提出问题2:任何一个数列一定是等差数列吗?如果是等差数列,公差一定是正数吗?

师生讨论得出结论:

、一个数列是等差数列必须具有这样的特点: 从第2项起,每一项与它的前一项的差都等于同一个常数;

(2)等差数列的公差d可能是正数、负数、零。

[设计说明:从具体数列入手,有利于较多基础差的学生理解等差数的定义,判断数列是否为等差数列转换成具体的步骤:求后面一项与前面一项的差,看这些差是否相等]

提出问题3:等差数列 的公差d的数学表达式为: ,

揭示了求公差d可以用哪些式子表示?

师生共同活动: 等,

变式:

提出问题4:如果等差数列 只知道首项 ,公差d,那么这个数列的其他项如何表示?

师生共同活动:

…,

[设计说明:问题3、问题4的提出训练学生的变形思想、递归思想,从而引出等差数列的通项公式及学生容易理解通项公式的变形公式]

<二>等差数列的通项公式:

高中等差数列的教学设计 篇五

教学目标:

(1)理解等差数列的概念,掌握等差数列的通项公式;

(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;

(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。

教学重、难点:等差数列的定义及等差数列的通项公式。

知识结构:一般数列定义通项公式法

递推公式法

等差数列表示法应用

图示法

性质列举法

教学过程:

(一)创设情境:

1.观察下列数列:

1,2,3,4,……;(军训时某排同学报数)①

10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②

2,2,2,2,……;(坐38路公交车的车费)③

问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)

规律:从第2项起,每一项与前一项的差都等于同一常数。

引出等差数列。

(二)新课讲解:

1.等差数列定义:

一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。

问题:

(a)能否用数学符号语言描述等差数列的定义?

用递推公式表示为或.

(b)例1:观察下列数列是否是等差数列:

(1)1,-1,1,-1,…

(2)1,2,4,6,8,10,…

意在强调定义中“同一个常数”

(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d<0时,数列有什么特点(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影响)

说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。

例3:求等差数列13,8,3,-2,…的第5项。第89项呢?

放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然后引出求一般等差数列的通项公式。

2.等差数列的通项公式:已知等差数列的首项是,公差是,求.

(1)由递推公式利用用不完全归纳法得出

由等差数列的定义:,,,……

∴,,,……

所以,该等差数列的通项公式:.

(验证n=1时成立)。

这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。

(2)累加法求等差数列的通项公式

让学生体验推导过程。(验证n=1时成立)

3.例题及练习:

应用等差数列的通项公式

追问:(1)-232是否为例3等差数列中的项?若是,是第几项?

(2)此数列中有多少项属于区间[-100,0]?

法一:求出a1,d,借助等差数列的通项公式求a20。

法二:求出d,a20=a5+15d=a12+8d

在例4基础上,启发学生猜想证明

练习:

梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。

观察图像特征。

思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?

课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。

高中等差数列的教学设计 篇六

[教学目标]

1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解 等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一。课题引入

创设情境 引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:

1682,1758,1834,1910,1986,( )

你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?

(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。

(3) 1,4,7,10,( ),16,…

(4) 2,0,-2,-4,-6,( ),…

它们共同的规律是?

从第二项起,每一项与前一项的差等于同一个常数。

我们把有这一特点的数列叫做等差数列。

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

2、等差数列定义的数学表达式:

试一试:它们是等差数列吗?

(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…

(2) 5,5,5,5,5,5,…

(3) -1,-3,-5,-7,-9,…

(4) 数列{an},若an+1-an=3

3、等差中顶定义

在如下的两个数之间,插入一个什么数后这三个数就

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列 首项是 ,公差是 ,那么这个等差数列 如何表示? 呢?

根据等差数列的定义可得:

, , ,…。

所以: ,

……

由此得 ,

因此等差数列的通项公式就是: ,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

……

将以上 -1个式子相加得等差数列的通项公式就是: ,

三、应用与探索

例1、(1) 求等差数列8,5,2,…,的第20项。

(2) 等差数列 -5,-9,-13,…,的第几项是 –401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得 成立,实质上是要求方程 的正整数解。

例2、在等差数列中,已知 =10, =31,求首项 与公差d.

解:由 ,得 。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1、 等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1,则a =( )。

A. 1 B. -1 C. -2 D. 22.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结

1.等差数列的通项公式:

公差 ;

2、 等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3、 判断一个数列是否为等差数列只需看 是否为常数即可;

4、 利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页 习题2.2 第1,3,5题

2、选做题:如何以最快的速度求:1+2+3++100=

高斯说:“请同学们预习下一节:等差数列的前N项和。”

等差数列教案 篇七

《等差数列》教案设计

授课教师 授课班级 课 题 3.2.1等差数列(一) 课型 新授课 教学目标 知识目标 等差数列的定义。

等差数列的通项公式。 能力目标 明确等差数列的定义。

掌握等差数列的通项公式,并能运用其解决问题。 情感目标 培养学生的观察能力。

进一步提高学生的推理、归纳能力。

培养学生的应用意识。 教学重点 等差数列的定义的理解和掌握。

等差数列的通项公式的推导和应用。 教学难点 等差数列“等差”特点的理解、把握和应用。 教学过程 教学环节和教学内容 设计意图 【复习回顾】(2分钟)

数列的定义以及数列的通项公式和递推公式。

【引入】(3分钟)

某人要用彩灯装饰圣诞树,这个人做事喜欢按一定的规律去做,他在圣诞树的顶尖装上1个彩灯,在第一层装上4个,第二层装上7个,第三层装上10个,第四层装上13个。如果有第五层,你能猜得出他要装上多少个彩灯吗?他的规律是怎样的?

你能根据规律在( )内填上合适的数吗?

(1)1, 4, 7,10,13,( )

(2)21, 21.5, 22, ( ), 23, 23.5,…

(3)8,( ), 2, -1, -4, …

(4)-7, -11, -15, ( ), -23

共同特点:从第2项起,每一项与它的前一项的差等于同一个常数。这样的数列叫做等差数列。

【讲授新课】(16分钟)

一、等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。

用符号表示:

教师活动:分析定义,强调关键的地方,帮助学生理解和掌握。

问题:1.数列(1)(2)(3)(4)的公差分别是多少?

2、(5)1, 3, 5, 7, 9, 2, 4, 6, 8, 10

(6)5, 5, 5, 5, 5, 5 ……是等差数列吗?

3、求等差数列 1, 4, 7,10,13,16,…的第100项。

师生一起讨论回答。

二、等差数列的通项公式

如果等差数列 的首项是 ,公差是d,则据其定义可得:

即:

即:

即:

由此归纳等差数列的通项公式可得:

∴已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项

思考:已知等差数列的第m项 和公差d,这个等差数列的通项公式是?答:

【例题讲解】(8分钟)

数学等差数列教案 篇八

一、教材分析

1、教学目标:

A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

C 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

2、教学重点和难点

①等差数列的概念。

②等差数列的通项公式的。推导过程及应用。用不完全归纳法推导等差数列的通项公式。

二、教法分析

采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是

21,22,23,24,25,

2、某剧场前10排的座位数分别是:

38,40,42,44,46,48,50,52,54,56。

3.某长跑运动员7天里每天的训练量(单位:)是:

7500,8000,8500,9000,9500,10000,10500。

共同特点:

从第2项起,每一项与前一项的差都等于同一个常数。

(二) 新课探究

1、给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③公差可以是正数、负数,也可以是0。

2、推导等差数列的通项公式

若等差数列{an }的首项是 ,公差是d, 则据其定义可得:

- =d 即: = +d

– =d 即: = +d = +2d

– =d 即: = +d = +3d

进而归纳出等差数列的通项公式:

= +(n-1)d

此时指出:

这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

– =d

– =d

– =d

– =d

将这(n-1)个等式左右两边分别相加,就可以得到 – = (n-1) d即 = +(n-1) d

当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用

(三)应用举例

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

例1 (1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

第二问实际上是求正整数解的问题,而关键是求出数列的通项公式

例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。

在前面例1的基础上将例2当作练 计算中间各级的宽度。

(四)反馈练习

1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列

此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

(五)归纳小结 (由学生总结这节课的收获)

1、等差数列的概念及数学表达式.

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2、等差数列的通项公式 = +(n-1) d会知三求一

(六) 布置作业

必做题:课本P114 习题3.2第2,6 题

选做题:已知等差数列{ }的首项 = -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

四、板书设计

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

文章评论

    共有条评论来说两句吧...

    用户名:

    验证码: