您现在的位置是:首页 > 心得体会
数据分析表范文(通用十九篇)
数据分析表范文(篇一)
大家都知道,不管是什么文体都是有一定的结构的,当然,数据分析报告会有一定的结构,但是这种结构不是一成不变的,会根据公司业务、需求的变化而产生一定的调整。很多文体就是最经典的结构还是“总—分—总”结构,它主要包括:开篇、正文和结尾三个部分。当然,数据分析报告也可以是这样的结构。
在开篇的部分包括标题页、目录和前言。正文主要包括具体分析过程和结果;结尾主要是结论、建议和附录。我们会为大家一个一个的解释这些内容需要注意的地方。
首先就是标题,标题页需要写明报告的题目,标题需要精简干练,根据版面的要求在一两行内完成。起好标题很重要,好的标题不仅可以表现数据分析的主题,而且能够引起读者的阅读兴趣。对于标题需要注意4点。第一就是提出疑问。这里标题以设问的方式提出报告所要分析的问题,引起读者的注意和思考。第二就是概括主要内容这类标题重用数据说话,让读者捉住中心。第三就是解释基本观点。这类标题往往用观点句来表示,点名数据分析报告的基本观点。第四就是交代分析主题。这类标题反映分析的对象、范围、时间和内容等情况,并不点名分析师的看法和主张。
然后说说目录,如果一份数据分析报告没有目录,那么这个数据分析报告不是一个完整的数据分析报告,目录可以帮助读者快速的找到所需内容,因此要在目录中列出报告主要章节的名称。如果是在word中展现,还要在章节名称后加上对应的页码,对于比较重要的二级目录也可以将其列出来,但是目录也不要太过详细,因为这样读起来不够好。另外,通常公司和企业高管没有时间读完完整的报告,他们只对其中一些以图表展示的分析结论感兴趣,所以,当书面报告中有大量的图表时,可以考虑将图表单独制作成目录,以便日后利用。
数据分析表范文(篇二)
关键词:财务分析;大数据;教学改革
基金项目:本文系北京信息科技大学教学提高-专业建设项目(项目编号:5028023501)的研究成果。
中图分类号: 文献标识码:A 文章编号:1007-0079(2013)25-0111-02
如何培养财务分析人才?在财经类高校本科,一般都开设“财务分析”课程,该课程教学目的是培养学生对真实企业进行综合财务分析,并能独立撰写财务分析报告的能力。[3]本文以北京信息科技大学(以下简称“我校”)为例,探讨大数据时代下财务分析人才的需求特点,对高校“财务分析”课程设置的影响,并提出改进“财务分析”课程教学的建议。
一、大数据时代下财务分析人才需求特点
相较于其他类型数据,财务数据更大、更复杂,蕴藏着更多宝贵信息。麦肯锡公司2011年报告推测,利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。[2]在财务大数据环境下,如何整理与统计这些杂乱无章的数据?如何让财务数据开口说话为企业管理者经营决策提供科学依据?朱东华(2013)认为,大数据时代下,传统的数据分析方法已经不再适应当前的数据环境,同时,各种企业对数据的依赖与日俱增,甚至定量分析方法将逐步取代定性分析方法。[4]财务大数据和大量的财务数据分析需求助长了企业对统计和数学背景的人才需求。
可见,大数据时代下财务分析人才应该具备扎实的统计学和数学功底,能够熟练运用定量分析方法分析数据以获取信息,撰写分析报告为企业相关利益人决策提供依据。
二、“财务分析”课程教学现状
张先治(2007)认为,财务分析是财务分析主体为实现财务分析目标,以财务信息及其他相关信息为基础,运用财务分析技术,对分析对象的财务活动的可靠性和有效性进行分析,为经营决策、管理控制及监督管理提供依据的一门具有独立性、边缘性、综合性的经济应用学科。[5]财务分析课程是为我校经济管理学院财务管理专业本科三年级开设的一门专业必修课。学生前期已经学过数学、经济学、会计学、财务管理、统计学等课程。财务分析课程正是在学生掌握前期所学各门课程的基础上,培养学生综合运用所学专业知识,分析判断企业的财务状况,并根据数据分析结果找出企业存在的问题,提出解决方案。[6]为了更好地实现“财务分析”课程教学目的,课程组的老师们经过讨论,决定修改2008级财务管理专业教学计划,将原来课堂教学的方式改为1/2的学时用于课堂教授基本理论,1/2学时用于实践教学。笔者自2011年开始,按照新的教学计划给三届学生讲授了“财务分析”课程。
1.理论教学部分
教材选用东北财经大学出版社出版,张先治和陈友邦主编的《财务分析》(第五版)。该教材体系完整,内容丰富,全书以一家虚拟的ZTE公司为例,演示财务报告分析、财务效率分析和财务综合分析。每章设有案例和复习思考题,该书还有配套的习题集。在课堂教学中,以教材为主线,突出介绍各种财务分析方法的使用,以及根据分析结果得出结论,提出解决方案。
2.实践教学部分
但是,随着大数据时代的来临,外部环境对数据分析能力要求的提升,仅仅学会利用Excel进行水平分析、垂直分析、趋势分析、比率分析和因素分析,已经远远不能满足市场对财务分析人才的需求,学生就业的竞争力无从谈起。结合前面大数据时代下财务分析人才需求特点,我校学生财务分析能力的培养存在着以下问题:
1.学生数据收集、整理和分析能力弱
“财务分析”课程讲授的基本方法主要是比率分析和因素分析法等。目前,无论是学术界还是业界,研究人员大量使用统计模型进行财务数据分析,例如聚类分析、多元回归、因子分析、时间序列预测法等。因而,我校学生数据分析能力急需加强,尤其是统计学和数学的基础要扎实。
2.学生财务分析报告撰写水平有待提高
财务分析的结果是以财务分析报告的形式展示给企业利益相关人,为其进行财务预测、财务决策、财务控制和财务评价等提供可靠信息。财务分析报告是对企业经营状况、资金运作的综合概括和高度反映。李宝智(2012)认为,报告应具备八要素:准确、完整、可比、用户导向、相关、问题的解决方案、及时和易用。[8]从我校学生提交的财务分析报告看,与上述要求还有很大差距。
三、“财务分析”课程教学改革建议
重点介绍几个数据库的使用:
(1)金融数据库。我校购买了两款金融数据库,北京聚源锐思数据科技有限公司金融数据库(http://)和深圳市国泰安信息技术有限公司CSMAR财经系列研究数据库(http://)。登陆金融数据库后,输入查询条件即可下载上市公司财务数据,速度快且数据量大,数据格式可以任意选择。
(2)中国资讯行(国际)有限公司高校财经数据库(http://),INFOBANK于1995年在香港成立,是一家专门收集、处理及传播中国商业、经济信息的香港高科技企业,信息范围涵盖19个领域、197个行业。
2.培养数据预处理和建模能力
收集到数据之后,需要对数据进行预处理,利用统计学的理论和方法将数据转换成一个分析模型。[9]学生在统计学、计量经济学课程中,已经完成基本模型理论、SPSS或者Eviews三分析软件的学习。但是,若想实现对大数据的整理和分析,应该掌握R或者Matlab统计分析软件,同时,还要掌握一种编程语言,例如C++、JAVA、C#等。利用编程语言调用统计分析软件,从而实现大数据的分析。另外,建议学生了解Perl语言编程,该语言擅长处理非结构数据。
3.培养文献阅读及财务分析报告撰写能力
数据分析之后,需要撰写财务分析报告,为各方利益相关者的决策提供依据。不同财务分析的目的,形成的财务分析报告具体要求会有所差异,但是撰写财务分析报告的基本步骤相同。首先查阅文献,阅读相关学术文章、财务分析师分析报告、评级机构报告等;其次,模仿写作,组织财务分析结果,形成报告。此中没有捷径,需多看、多写。
注释:
①1TB 等于1000GB,1PB 等于1000TB。
参考文献:
[1]孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,(1).
[2]邬贺铨.大数据时代的机遇与挑战[J].求是,2013,(4).
[3]张肖飞.财经类高校《财务分析》课程案例教学改革研究[J].商业会计,2013,(1).
[4]朱东华,张嶷,汪雪锋,等.大数据环境下技术创新管理方法研究[J].科学学与科学技术管理,2013,(4).
[5]张先治.财务分析理论发展与定位研究[J].财经问题研究,
2007,(4).
[8]李宝智.探讨一种撰写财务分析报告的“ACCURATE”新思路[J].会计师,2012,(8).
[9]曹中.论数据挖掘和企业财务分析[J].上海会计,2004,(3).
数据分析表范文(篇三)
数据分析报告格式范文
目录
第一章 项目概述
此章 包括项目介绍、项目背景介绍、主要技术经济指标、项目存在问题及推荐等。
第二章 项目市场研究分析
此章 包括项目外部环境分析、市场特征分析及市场竞争结构分析。
第三章 项目数据的采集分析
此章 包括数据采集的资料、程序等。
第四章 项目数据分析采用的方法
此章 包括定性分析方法和定量分析方法。
第五章 资产结构分析
此章 包括固定资产和流动资产构成的基本状况、资产增减变化及原因分析、自西汉结构的合理性评价。
第六章 负债及所有者权益结构分析
此章 包括项目负债及所有者权益结构的分析:短期借款的构成状况、长期负债的构成状况、负债增减变化原因、权益增减变化分析和权益变化原因。
第七章 利润结构预测分析
此章 包括利润总额及营业利润的分析、经营业务的盈利潜力分析、利润的真实决定性分析。
第八章 成本费用结构预测分析
此章 包括总成本的构成和变化状况、经营业务成本控制状况、营业费用、管理费用和财务费用的构成和评价分析。
第九章 偿债潜力分析此章
包括支付潜力分析、流动及速动比率分析、短期偿还潜力变化和付息潜力分析。
第十章 公司运作潜力分析此章
包括存货、流动资产、总资产、固定资产、应收账款及应付账款的周转天数及变化原因分析,现金周期、营业周期分析等。
第十一章 盈利潜力分析
此章 包括净资产收益率及变化状况分析,资产报酬率、成本费用利润率等变化状况及原因分析。
第十二章 发展潜力分析
此章 包括销售收入及净利润增长率分析、资本增长性分析及发展潜力状况分析。
第十三章 投资数据分析
此章 包括经济效益和经济评价指标分析等。
第十四章 财务与敏感性分析
此章 包括生产成本和销售收入估算、财务评价、财务不确定性与风险分析、社会效益和社会影响分析等。
第十五章 现金流量估算分析
此章 包括全投资现金流量的分析和编制。
第十六章 经营风险分析
此章 包括经营过程中可能出现的`各种风险分析。
第十七章 项目数据分析结论与推荐
第十八章 财务报表
第十九章 附件
数据分析表范文(篇四)
[摘要]随着信息技术在财务管理领域的广泛应用,审计机构急需采用新的审计方式和手段,以提高审计质量,降低审计风险。本文利用商业智能技术,对审计方法进行新的探讨,并建立基于商业智能的审计模型,探讨在海量数据条件下进行审计的新途径。
[关键词]OLAP;数据挖掘;审计;商业智能
1商业智能模型
本文利用SQLServer2005构建基于商业智能的审计模型TAuditMin,如图1所示。审计过程分为:采集审计数据、建立数据仓库、OLAP多维分析、数据挖掘、前端展示等。
源系统
数据挖掘的基础是大量的历史数据。这里的源系统是指与审计业务相关的各种关系型数据库,如金蝶数据库、用友数据库等。这些业务系统中的数据可以应用SSIS(MicrosoftSQLServer2005IntegrationServices),通过数据清洗、转换和加载(ETL)等步骤载入数据仓库,为多维分析和数据挖掘作准备。
数据仓库
该部分的功能就是为数据挖掘提供多维数据集(Cube)和数据集(Dataset),用于数据挖掘的Cube也可以根据用户的要求作相应的更改。商业智能提供了自动创建Cube的功能,用户只需要设置好相应的维度表和量度组,通过一些简单的命令就能实现Cube的自动生成和重新生成。因此,数据仓库设计主要在于设计维度表和量度组,以及两者之间的关系。
多维分析
OLAP为用户提供强大的数据分析功能。在数据仓库建好后,输入测试数据,测试数据仓库和模型。如果分析结果显示创建的模型有问题,则可以通过OLAP提供的功能重新创建模型,并且按照用户喜好的方式显示数据分析的结果。模型没有问题之后,就可以对ETL处理过的真实数据做相应的数据分析。
数据挖掘
数据挖掘模型的建立以MDX语句为基础,同时也支持手工操作。模型建好以后,需要对选择数据挖掘的模型进行测试和训练。用于训练的数据可以来自于数据仓库生成的Cube,也可以直接使用其他数据集,如文本文件。模型训练的结果既可以直接浏览也可以生成报表在客户端展示,数据挖掘功能主要通过微软的SSAS和AMO实现。
客户端
即数据挖掘模型、报表和OLAP分析结果的前端展现,是用户与系统交互界面。目前比较流行的方式是基于Web的B/S结构。
发现审计线索
在数据分析的基础上,定位重点审计对象,利用先进的计算机技术或其他方式追踪线索,重点审计该类数据。
形成审计报告
针对审计线索,加以重点审计,提交审计报告,以供分析和决策。
本文提出的解决方案将数据仓库、OLAP和数据挖掘等技术相结合,可指导审计人员高效地开展审计工作,增强审计人员的审计数据分析能力,提高审计的效率和效果。
2商业智能在审计中的应用
商业智能在审计中的应用主要包括OLAP和数据挖掘两部分,以下具体介绍这两部分的应用。
在审计中的应用
通过数据仓库,可以利用OLAP技术,采用包含结构、趋势、同比、因素、TOPN等多种分析方法,自动生成图文并茂的分析报告,并可以在任意时间,生成任意内容(如财务、销售、仓库、采购、应收、应付),同时实现分析报告中的动态钻取,满足审计人员的需要。我们可以利用OLAP进行销售分析、应收款项分析、仓库库存分析以及财务决策评价等。
OLAP支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。如MDX查询语句:
withset[TenBest]as
’TopCount([Product].[BrandName].Members,10,[UnitSales])’
set[LastMonth]as
’Tail(Filter([Time].[Month].Members,NotIsEmpty([Time].CurrentMember)),1)’
set[Last6Months]as’
[LastMonth].item(0).item(0).Lag(6):
[LastMonth].item(0).item(0)’
select[Last6Months]onCOLUMNS,
[TenBest]onROWS
fromSales
可以方便地查询某商场最近6个月销售趋势最好的前10种商品及销售量。
又如,对应收账款进行分析,可以通过图表,直观显示账龄、金额等情况(如图2所示)。
数据挖掘在审计中的应用
3总结
应用以上方法,我们可以在海量财务审计数据中有效地运用商业智能技术,查找问题并发现一些超出审计经验的规律性问题。将商业智能应用到具有多属性特征的审计数据分析中,会减轻审计人员的负担,提高审计管理的质量,为审计工作提供有用信息,提高审计效率。商业智能在审计工作中,必将会发挥越来越重要的作用。
数据分析表范文(篇五)
(1)项目数据分析报告简介:
项目数据分析报告是“项目数据分析师”以客观的态度和谨慎的作风,通过科学的市场调研,运用*的分析方法,秉承公正的原则,对项目的可行*进行全方位的分析及评估,为投资方的决策提供科学、严谨的依据,降低项目投资的风险,主要服务对象为中小型企业、国内外银行、投融资公司、*组织等机构。
(2)项目数据分析报告内容:
项目数据分析报告的主要内容包括:项目提出的背景、项目基本情况(建设内容、建设规模、投资总额、市场前景、经济效益、社会效益、地理位置、交通条件、气候环境、人文环境、优惠政策等)、项目存在的问题、项目的战略分析、项目的管理架构分析、项目预测分析(市场、收入、成本)、财务分析(获利能力、偿债能力、发展能力)、不确定*分析、风险分析、结论和建议等。
(3)项目数据分析报告案例:
某企业项目数据分析报告案例样本
目录
第一章项目概述
此章包括项目介绍、项目背景介绍、主要技术经济指标、项目存在问题及建议等。
第二章项目市场研究分析
此章包括项目外部环境分析、市场特征分析及市场竞争结构分析。
第三章项目数据的采集分析
此章包括数据采集的内容、程序等。
第四章项目数据分析采用的方法
此章包括定*分析方法和定量分析方法。
第五章资产结构分析
此章包括固定资产和流动资产构成的基本情况、资产增减变化及原因分析、自西汉结构的合理*评价。
第六章负债及所有者权益结构分析
此章包括项目负债及所有者权益结构的分析:短期借款的构成情况、长期负债的构成情况、负债增减变化原因、权益增减变化分析和权益变化原因。
第七章利润结构预测分析
此章包括利润总额及营业利润的分析、经营业务的盈利能力分析、利润的真实判断*分析。
第八章成本费用结构预测分析
此章包括总成本的构成和变化情况、经营业务成本控制情况、营业费用、管理费用和财务费用的构成和评价分析。
第九章偿债能力分析
此章包括支付能力分析、流动及速动比率分析、短期偿还能力变化和付息能力分析。
第十章公司运作能力分析
此章包括存货、流动资产、总资产、固定资产、应收账款及应付账款的周转天数及变化原因分析,现金周期、营业周期分析等。
第十一章盈利能力分析
此章包括净资产收益率及变化情况分析,资产报酬率、成本费用利润率等变化情况及原因分析。
第十二章发展能力分析
此章包括销售收入及净利润增长率分析、资本增长*分析及发展潜力情况分析。
第十三章投资数据分析
此章包括经济效益和经济评价指标分析等。
第十四章财务与敏感*分析
此章包括生产成本和销售收入估算、财务评价、财务不确定*与风险分析、社会效益和社会影响分析等。
第十五章现金流量估算分析
此章包括全投资现金流量的分析和编制。
第十六章经营风险分析此章包括经营过程中可能出现的各种风险分析。
第十七章项目数据分析结论与建议
第*章财务报表
第十九章附件
数据分析表范文(篇六)
项目数据分析报告是通过对项目数据全方位的科学分析来评估项目的可行*,为投资方决策项目提供科学、严谨的依据,降低项目投资的风险。
项目数据分析报告—项目市场化*作的科学依据:
政策背景:随着我国经济体制变革的不断深入发展,*的决策高层已经完全意识到了项目分析的真正意义,这一佐*就是<*关于投资体制改革的决定>的*。决定明确*不再承担对投资项目的审核评估,实行备案制。而投资方和项目方,则对项目的风险承担完全责任,完全按照市场经济的模式来实施项目分析评估。这就正式宣告,*的项目分析,将彻底进入市场化的运作模式。
时代需求:进入二十一世纪信息化时代,传统意义上的经济、管理和投资金融等学科和电子信息技术发生了不可分割的交融。作为先进生产力代表的电子信息技术,成为经济、管理和投资金融等领域创新变革的支撑和动力。“项目数据分析”以*技术的身份出现在经济、管理和投资金融*等领域,是信息化时代发展的必然结果。
项目数据分析报告—项目可行*判断的重要依据
任何欣欣向荣的企业,都是建立在所开发的优质项目基础上的。但如何才能确定项目的可行和优质呢?发达国家的做法是对项目的最终决策,一切以科学定量分析的项目数据为依据。在*,随着世界经济一体化进程的加速和全球投资市场的蓬勃发展,加上*投资分析行业正处于发展的起步阶段,投资人、企业管理层都迫切需要一个统一的、规范的标准来衡量投资项目的科学*和可行*,*的项目数据分析报告在*变得炙手可热。越来越多的投资人也选择项目数据分析报告为他们准备投资的项目做出科学、合理的分析,以便正确决策项目;越来越多的风险投资机构把项目数据分析报告作为其判断项目是否可行及是否值得投资的重要依据。
我们的目标:
构建数据分析报告的具体目标应可以描述为以下3个方面:
1、进行总体分析。从项目需求出发,对被项目的财务、业务数据进行总量分析,把握全局,形成对被分析的项目财务、业务状况的总体印象。
2、确定项目重点,合理配置项目资源。在对被分析的项目总体掌握的基础上,根据被分析项目特点,通过具体的趋势分析、对比分析等手段,合理的确定分析的重点,协助分析人员作为正确的项目分析决策,调整人力物力等资源达到最佳状态。
3、总结经验,建立模型。通过选取指标,针对不同的分析事项建立具体的分析模型,将主观的经验固化为客观的分析模型,从而指导以后项目实践中的数据分析。
以上3个具体目标的联系是紧密的,不是孤立的,只有在进行总体分析的基础上,才能进一步的确定项目重点,并在对重点内容的分析中得出结果,进而实现评价的过程。如果单单实现其中一个目标,最终得出的报告将是不完整的,对制订项目实施方案也没有可靠的支撑作用。
我们的原则
1、规范*原则。
数据分析报告中所使用的名词术语一定要规范,标准统一,前后一致,基本上要与前人所提出的相一致。
2、重要*原则。
数据分析报告一定要体现项目分析的重点,在项目各项数据分析中,就应该重点选取真实*、合法*指标,构建相关模型,科学*地进行分析,并且反映在分析结果中对同一类问题的描述中,也要按照问题的重要*来排序。
3、谨慎*原则。
数据分析报告的编制过程一定要谨慎,体现在基础数据须要真实完整,分析过程须要科学合理全面,分析结果可靠,建议内容实事求是。
4、鼓励创新原则。
科技是在不断发展进步的,必然有创新的方法或模型从实践中摸索总结出来,数据分析报告要将这些创新的想法记录下来,发扬光大。
总之,一份完整的数据分析报告,应当围绕目标,确定范围,遵循一定的前提和原则,系统的反映行业分析的全貌,从而推动该行业的进一步发展。
样本如下:
目录
第一章项目概述
此章包括项目介绍、项目背景介绍、主要技术经济指标、项目存在问题及建议等。
第二章项目市场研究分析
此章包括项目外部环境分析、市场特征分析及市场竞争结构分析。
第三章项目数据的采集分析
此章包括数据采集的内容、程序等。
第四章项目数据分析采用的方法
此章包括定*分析方法和定量分析方法。
第五章资产结构分析
此章包括固定资产和流动资产构成的基本情况、资产增减变化及原因分析、自西汉结构的合理*评价。
第六章负债及所有者权益结构分析
此章包括项目负债及所有者权益结构的分析:短期借款的构成情况、长期负债的构成情况、负债增减变化原因、权益增减变化分析和权益变化原因。
第七章利润结构预测分析
此章包括利润总额及营业利润的分析、经营业务的盈利能力分析、利润的真实判断*分析。
第八章成本费用结构预测分析
此章包括总成本的构成和变化情况、经营业务成本控制情况、营业费用、管理费用和财务费用的构成和评价分析。
第九章偿债能力分析
此章包括支付能力分析、流动及速动比率分析、短期偿还能力变化和付息能力分析。
第十章公司运作能力分析
此章包括存货、流动资产、总资产、固定资产、应收账款及应付账款的周转天数及变化原因分析,现金周期、营业周期分析等。
第十一章盈利能力分析
此章包括净资产收益率及变化情况分析,资产报酬率、成本费用利润率等变化情况及原因分析。
第十二章发展能力分析
此章包括销售收入及净利润增长率分析、资本增长*分析及发展潜力情况分析。
第十三章投资数据分析
此章包括经济效益和经济评价指标分析等。
第十四章财务与敏感*分析
此章包括生产成本和销售收入估算、财务评价、财务不确定*与风险分析、社会效益和社会影响分析等。
第十五章现金流量估算分析
此章包括全投资现金流量的分析和编制。
第十六章经营风险分析
此章包括经营过程中可能出现的各种风险分析。
第十七章项目数据分析结论与建议
第*章财务报表
第十九章附件
数据分析表范文(篇七)
[摘 要]计算机的广泛应用和云时代的来临,使得大数据受到越来越多行业和人群的关注。大数据技术的战略意义不仅在于获取海量的数据信息,而且能够对这些看似毫无关联的信息进行专业化处理和分析归类,从而为某一行业发展提供必要的数据支持。将大数据技术应用到宏观经济中,对宏观经济的政策制定、数据挖掘、发展分析提供参考性依据,有利于提高宏观经济分析的时效性和准确性。因此,必须重视大数据在促进宏观经济发展中的积极作用。
[关键词]大数据;宏观经济;机遇与挑战;分析
[DOI]
2015年9月份,xxx与工信部联合印发了《促进大数据发展行动纲要》,明确要求在“十三五”规划中重点推动大数据的发展和应用,建立运行平稳、安全高效的经济运行新机制,这也为在大数据时代下更加精准、更加高效地开展宏观经济分析提供了政策保障。
1 大数据在宏观经济分析中的重要作用
为宏观经济分析提供丰富的数据支持
为宏观经济分析提供更多的方法
传统的宏观经济分析手段,由于受技术条件和工作理念的影响,往往采用统计分析和随机抽样分析的方式,近似地反映或推断出宏观经济的分析结果。随着市场经济的深化改革和我国经济体制结构的转变,传统的宏观经济分析手段难以适应国家经济发展的需要,云时代的到来和大数据技术的出现为宏观经济分析提供了更多种类、更加简便的分析方法。例如,传统的宏观经济分析由于获取数据困难,因此采用“随机抽样反映整体”的分析方法,其分析结果与实际情况必然会存在较大误差;而大数据的分析是以海量的数据样本为基础,并且样本种类丰富,基本上涵盖了影响宏观经济发展的所有行业,在此基础上得出的分析结论无限趋近于我国宏观经济发展的实际情况,提高了宏观经济分析的可靠性。
优化了宏观经济分析的技术
大数据分析与单纯的计算机数据统计的不同之处在于:计算机数据统计只能进行初步的数据分类和整理,并以数字、图标等形式展示出来,虽然具有较强的直观性,但是不能深层次地反映宏观经济内容。而大数据分析融合了计算机、电子信息和数学建模等多个专业技术,以海量数据为基础,建立数学分析和统计模型,利用分析模型对数据进行深层次的分析、处理和加工,并结合了语音识别、图像识别等技术,提高了数据分析技术的专业化水平。
2 大数据在宏观经济分析中的机遇与挑战
大数据时代宏观经济分析具有的机遇
大数据时代宏观经济分析面临的挑战
大数据技术在带来诸多便利的同时,其自身也存在着一些有待改进的地方,主要表现为:首先,大数据所采集的数据量大,但是缺乏有效的数据筛选标准,导致数据中夹杂着部分无用或不相干的信息。例如我们在采集“全国旅游消费总额”相关的数据时,可能会搜索到与旅游相关的“交通运输量”的信息,但是这些信息并不会对宏观经济分析起到影响,反而增加了样本总容量。因此,如何加强信息甄别和筛选,是下一步大数据技术优化的重要内容;其次,数据的安全性仍然有待提高。由于前期采集数据量非常大,但是进行宏观分析是一些相对漫长的过程,这些数据在保存期间如何确保安全性,关系到后期宏观经济分析的最终结果。虽然部分数据库建立了相对完善的防火墙和病毒查杀系统,但是也很难彻底根除非法访问的风险;最后,大数据时代的宏观经济分析需要大量专业化人才,但是从现阶段相关从业人员的整体情况看,大数据分析人才数量难以满足行业发展需要。
3 提升大数据对宏观经济分析作用的对策
构建良好的大数据获取环境
政府应当主导建立一个大数据的收集体系,在一些重要的宏观经济领域制订大数据的收集计划,从而保证大数据的获取。为此政府部门应当做好以下具体的工作:首先,政府部门要从思想认识上提高对大数据的重视程度,对于大数据在宏观经济研究中的价值予以认可。从而在实际的工作中能够形成稳定的资金投入并在政策法规上为大数据的应用提供便利条件。其次,政府应当加大高校或者是相关研究机构在大数据应用上的研究投入力度,支持研究机构在大数据应用上的深度挖掘,从而更好地发挥大数据的作用。最后,政府应当支持企业采用现代化的信息管理手段,从而为大数据的获取提供基础性的条件。利用企业的信息化系统可以快速地获取企业的相关发展数据信息,从而为宏观经济的大数据分析提供基础材料。
提升大数据的采集与管理工作水平
制定规范化的大数据采集与管理体系,保障用于宏观经济发展的大数据均能够得到有效的采集,并且还要确保数据的真实性。在利用大数据进行宏观经济的分析中大数据是基础的分析材料,所以有效地采集到大数据是十分重要的。首先,要规范大数据的采集工作流程,制定科学的大数据采集体系,从而促进大数据采集工作的有序开展。其次,对于在大数据采集过程中因小集体利益而不配合采集的个人或者是单位,应对其进行一定的处罚,从而威慑这些干扰大数据采集工作的不良情况。最后,要对大数据采集人员进行培养和提升,从而使其掌握较为熟练的大数据管理技能,为大数据的更好地应用提供条件。
培养大数据分析与应用人才
在大数据的应用中人才是其中的关键性组成部分,高素质的大数据分析与应用人才能够为宏观经济的分析提供有力支撑。为此,就必须在大数据人才培养上进行改进和提升。为此,应当做好以下内容:首先,政府部门应当重视大数据分析与应用人才的培养,出台各类支持性的培养政策。其次,高校应当根据现实的需求而开始相关的专业和课程,从而发挥大数据分析与应用人才培养的基地作用,以便为社会输送大量的大数据专业应用人才。最后,企业也应当在大数据人才培养上做出自己的贡献,对于企业内部的数据管理人员进行专业技能提升的培训,从而帮助他们掌握更多的大数据分析与应用的实际技能。
4 大数据与宏观经济政策制定
大数据革命为政府的宏观经济政策制定提供了机会。政府在政策制定上可以通过大数据分析系统提升公共服务质量,增加服务种类,并为公共服务提供更好的政策指导。同时,在大数据分析的运用、提高效率与其他政策和技术协同以及为公共服务领域带来变革等方面,政府可以加大重视和投入力度,为经济的进一步发展提供支持。
5 结论与展望
大数据时代极大地拓宽了信息来源、提高了获取信息的时效性,同时,新信息的非结构化对宏观经济分析的技术和方法提出了新的要求。在大数据背景下,由于数据噪声的存在,宏观经济数据挖掘变得十分重要,这就要改进技术,加强对非结构化和半结构化数据的挖掘。实时、快速、海量的数据为更加准确的宏观经济预测提供了可能,宏观经济预测模型也有待于进一步更新。在大数据时代,可以将机器学习算法引入宏观经济分析,改进宏观经济分析技术,解决“维数灾难”,提高宏观经济分析的准确性。大数据时代也将促进政府经济政策制定的变革,提升政策的时效性,提高政府服务效率。
参考文献:
[1]文桂江,李昕.大数据时代我国宏观经济数据的冲突与协调[J].河北经贸大学学报,2014(5):131-133.
[2]崔光N.房地产价格与宏观经济互动关系实证研究――基于我国31个省份面板数据分析[J].经济理论与经济管理,2013(1):157-162.
[3]戴成峰,张连增.我国财产保险区域差异与宏观经济的关系研究――基于省际面板数据的实证分析[J].保险研究,2012(11):142-153.
[4]申红艳,吴晨生,铁梅,等.大数据时代宏观经济分析面临的机遇与挑战[J].经济研究参考,2014(63):119-125.
[5]蔡永鸿,唐斯琪,于娟.大数据时代宏观经济与微观企业的行为联接[J].中国市场,2015(8).
数据分析表范文(篇八)
随着信息技术的飞速发展,计算机的触角已经深入到各行各业,越来越多的纸质数据与经验信息演变为电子数据存储于相关的信息系统中,因此作为审计的主要技术和工具,数据分析将对处在信息时代的审计发挥更大的作用。
尤其是近年来,计算机审计在全国各级审计机关逐步发展。作为开展计算机审计、确定审计重点及编制计算机审计方案的基础,研究被审计单位的数据情况,编制规范的审计数据分析报告是非常必要的,也是新的审计方式条件下体现审计成果的重要手段。
在本文中,我们主要简要介绍一下审计领域中数据分析报告的目标定位、适用范围和对象以及构建的原则。
一、目标定位
内容往往服务于目标,目标决定内容,因而数据分析报告的目标很大程度上决定其内容,我们应首先明确其目标定位。
构建数据分析报告的目标概念在外延上有所侧重,定位于为处于信息时代的审计服务。因此,它需要统一并且服务于审计这个大目标,但也具有自身的特点。根据《审计法》规定,我国国家审计的总目标是监督财政财务收支的真实性、合法性和效益性。在这个大前提下,我们认为构建计算机数据分析报告的总体目标是结合业务审计的具体目标,通过数据分析,实现价值最大化的审计决策,从而支撑制订的审计实施方案。这个总体目标总是可以划分为具体层次上的目标。我们认为,从属于其总目标,构建数据分析报告的具体目标应可以描述为以下3个方面:
1、进行总体分析。从审计工作需求出发,对被审计对象的财务、业务数据进行总量分析,把握全局,形成对被审计对象财务、业务状况的总体印象。
2、确定审计重点,合理配置审计资源。在对被审计对象总体掌握的基础上,根据被审计对象特点,通过具体的趋势分析、对比分析等手段,合理的确定审计的重点,协助审计人员作为正确的审计决策,调整人力物力等资源达到最佳状态。
3、总结经验,建立模型。通过选取指标,针对不同的审计事项建立具体的分析模型,将主观的经验固化为客观的分析模型,从而指导以后审计实践中的数据分析。
以上3个具体目标的联系是紧密的,不是孤立的,只有在进行总体分析的基础上,才能进一步的确定审计重点,并在对重点内容的分析中得出结果,进而实现评价的过程。如果单单实现其中一个目标,最终得出的报告将是不完整的,对制订审计实施方案也没有可靠的支撑作用。
二、适用范围及对象
首先本文所论述的数据,是在信息化环境中审计人员开展审计时需处理的电子数据。为了明确分析对象的范围,我们制定了对于数据的三个限制条件:
①来源于信息系统中,包括财务、业务、管理等方面;
②能以数据库中二维表的形式存储于计算机中;
③有助于审计分析。基于这些限制条件,数据应包括财务数据、业务数据和补充数据(从被审计单位以外的地方采集与数据分析相关的数据)。我们可以根据需要分析其中一种或几种数据。
其次,数据分析报告所记录的对象是计算机审计中审前调查阶段所作的数据分析的过程及结果。在实际审计工作中,数据分析报告应在计算机审计审前调查阶段数据分析完成后撰写,为制订审计实施方案提供参考。
三、原则
我们认为,编制数据分析报告总体上应当遵循以下原则:
1.规范性原则。
数据分析报告中所使用的名词术语一定要规范,标准统一,前后一致,基本上要与前人所提出的相一致,例如对商业银行的盈利能力进行分析时采用了“税收比率”这个已存在的指标,就不能自己重命名为“税收收入比”等其他名称。
2.重要性原则。
数据分析报告一定要体现审计的重点,例如在真实性、合法性审计中,就应该重点选取真实性、合法性指标,构建相关模型,从数据上进行分析。并且反映在分析结果中对同一类问题的描述中,也要按照问题的重要性来排序。
3.谨慎性原则。
数据分析报告的编制过程一定要谨慎,体现在基础数据须要真实完整,分析过程须要科学合理全面,分析结果可靠,建议内容实事求是。
4.鼓励创新原则。
计算机审计技术是在不断发展进步的,必然有创新的方法或模型从实践中摸索总结出来,数据分析报告要将这些创新的想法记录下来,发扬光大。
总之,一份完整的数据分析报告,应当围绕目标,确定范围,遵循一定的前提和原则,系统的反映计算机数据分析的全貌,从而推动计算机审计事业的进一步发展。
数据分析表范文(篇九)
数据分析对于任何一个呼叫中心都是非常重要的,刚刚开始做数据分析的人员总会提出类似这样的问题:应该怎么做数据分析?如何才能够做好数据分析工作?本文将从提高对数据重要性的认识、提高对数据的敏感性以及对数据统计分析的准确性三个方面让数据分析初学人员对数据分析有个总体认识。
一、提高对数据重要性的认识
1. 很多隐藏的问题是我们只能通过数据挖掘出来的,我们可以看到在哪些时间、哪些地点、哪些客户群、出现了哪些异常状况?同时通过数据深层次挖掘问题背后的真正原因并做出及时有效的应对措施。例如某呼叫中心的接通率3月份达到了,但是其人员的在线利用率(座席人员登入系统后与客户通话及事后处理时长占总登陆时长的比例)只达到了,说明座席人员的工作强度比较小、排班时安排的人员过剩,付出的代价就是人员成本过高(如图1)。
2. 任何一个呼叫中心都要做数据上的统计和分析,数据对于呼叫中心管理者的决策起到至关重要的作用,一个好的统计分析应该可以让管理者看到数据背后的信息并且能够给出几套决策方案,这样呼叫中心才能在瞬息万变的竞争中得到发展。再如客户针对某个业务拨打的频次非常高,我们可以通过数据分析挖掘真正的原因,为有效降低呼入量、提高客户满意度提供决策依据。
二、提高对数据的敏感性
1. 呼叫中心的指标
呼叫中心包含哪些指标?指标之间有什么关系?各指标平均情况、增长情况都是什么?一般呼叫中心的各个指标值大概在什么范围?同时了解各个指标在节假日会是什么情况?营销活动时期会是什么情况?一般呼叫中心会包含接通率、平均通话时长、事后处理时长、重复呼叫量、在线利用率、一次解决率等指标,当一次解决率明显提高时客户的重复呼叫量就会随之降低,从而在相同的人员配备情况下接通率也会明显提高,但是在线利用率会有所降低,最终导致人员成本过高。
2. 呼叫中心的范围
需要了解各行业、各地区以及国外一些呼叫中心的指标情况,知道各个指标在不同行业、不同地区的不同特征分别是什么,从而不断提高对数据的敏感性以便及时发现统计分析中的问题。用平均通话时长来举例,假如某呼叫中心该月平均通话时长为90秒,有A、B两个呼叫中心,他们的管理人员看完后得出这样的结论:A:90秒的平均通话时长比上个月高出了10秒,需要降低;B:这个月平均通话时长从100秒降到了90秒,客服代表的销售能力有了明显提升。很明显呼叫中心A一定是成本型呼叫中心,而呼叫中心B则是利润型呼叫中心(如图2)。
三、提高对数据统计分析的准确性
数据的准确性可以说是关乎呼叫中心成败的关键因素,一个统计上的错误就有可能误导管理者做出错误决策,所以我们从以下几个方面说明如何提高数据统计分析的准确性。
1. 准确认识数据
·各个统计数据(指标)分别是什么?分别是怎么定义的?计算公式是什么?例如前面提到的在线利用率——座席人员登入系统后与客户通话及事后处理时长占总登陆时长的比例;公式:(客服代表实际通话时长+事后处理时长)/ 登入系统时长。尽管不同的呼叫中心对于指标的定义可能有所不同,但是需要强调的是各个指标在同一个呼叫中心内的定义必须是一致的,如此才能让各级人员对指标有统一的认识。
·统计的是哪些业务?哪个时间范围?哪些客户群?哪些地区?在对呼叫中心数据有了整体了解的基础上,接下来的工作就是对数据的整理。
2. 准确整理数据
·应该先将原始数据进行备份,以备不时之需;
·整理过程中将数据粘贴为数值格式,剔除冗余数据、公式、批注等(如图3);
·整理过程中各个表格中数据需要有一个关键字段,这样可以将数据进行必要的关联。尽量将所有数据汇总到一个工作簿中,方便数据分析时做关联分析;
·整理过程中所用到的公式需要保存,不要粘贴为数值格式,以备分析中发现问题及时改正。
3. 准确分析数据
·分析前需要做出整体的分析框架,分析过程中发现不合理的地方及时调整;
·分析前应该把整理好的数据表格单独拿出来,不要在原有的整理数据表中做分析;
·分析过程中指标的名称、各维度的名称要保持统一;
·采用合适的分析方法,数据的描述统计、相关性分析、回归分析、80/20法则等;
·用合适的图表进行结果的展现(柱状图、折线图、雷达图、饼图等),需标注清楚图表的名称、数据的统计范围、单位等(如图4);
·给出正确的分析结论及相应的改善或者是应对措施;
·形成分析报告。
4. 对分析后的过程及结果进行核查
·检查分析中所用到的数据是否正确,避免分析此项而错用到其他项数据的情况;
·检查分析中用到的公式是否正确,看公式涉及的数据单元格是否正确(包括单元格是否完整、单元格引用是否正确);
·检查数据明显高于或者低于平时水平的异常点(或者说是不符合日常规律的点)是否正确,此时需要查看是否是整理的数据中有错误,包括时间、地点、业务、客户群等(如图5);
·检查分析结论是否正确,查看结论是否和分析的结果相一致;
·检查分析报告中是否有语句不通、语句歧义、字体格式(字号、颜色等)不统一、使用链接错误的地方。
5. 以上内容需在日常分析工作中不断完善,以保证数据分析的正确性、客观性、严谨性和时效性。
想要做一个优秀的数据分析人员必须具备以上谈到的基本素质,要是问到哪个是最重要的,只能说没有谁重谁轻,都很重要。为了做好数据分析工作、成为更好的数据分析人员,就让我们从“三个提高”开始吧。
数据分析表范文(篇十)
xxx
xxx@..com
(+86) 138-0013-8000
教育背景
-
乔布大学
数学专业
本科
GPA:
CET-6:557/710
数据分析技能
SPSS统计分析软件
Excel统计和函数应用
Google Analytics
数据相关经历
-
乔布科技公司
助理数据分析员
协助维护各销售区域数据系统,保证相关数据系统完整正确,确保相关日常工作的顺利进行,例如销售环节等
参与为各销售区提供销售数据支持/数据分析工作,定期生成报表,并且为销售奖金计算提供数据支持,以保证数据正确
-
非参数经济中带有测量误差数据的统计推断研究
项目成员
乔布大学统计学院刘强教授主持的国家社会科学基金课题项目
协助导师承担部分实际数据分析工作
-
“高教社杯”全国大学生数学建模竞赛
小组成员
运用数据分析法,从大量的观测数据中利用统计方法建立了抽象的XXX数学模型,并且解决了实际生活中的XXX问题
在大赛中获得了XX奖项,作品链接:
其他经历
-
乔布大学青年志愿者服务队
网络部部长
记录、整理、归档我校志愿者活动数据,并进行分析,提出优化意见
组织、策划并联系进行我校志愿者团队活动
兴趣爱好
对数字敏感,擅长用数字分析解决问题
设计求职简历要懂得技巧的运用
鉴于求职简历在求职中所起到的作用,求职者在求职之前必须要将求职简历写好,一份好的求职简历可以大大提高求职的通过率。那么一份出色的求职简历要能体现哪些内容呢?诸如个人档案信息、教育背景、社会实践、专业特长等等。在一份求职简历上可以突出的优势非常多,而要让这些的优势更好的显示出来,在编写求职简历的时候还需要懂得运用一些技巧。
1、标题的灵活运用
编写求职简历有其固定的格式,例如“专业特长”就是一个小的标题,在每一个标题下填写相关内容。而要运用技巧来写求职简历,可以将这种类型的小标题换一种形式,比如说“特长”这种标题可以换成 “可独立开发软件”、“具有熟练的销售经验”之类的标题。如此一来招聘官从标题上就可以清楚的看到你的实力,标题下则是论证的事实。
2、用事实说话提高可信度
求职简历的.写作技巧旨在让简历看起来更具有说服力,你所写的建立真实度越高则通过率就越高。那么如何让求职简历看起来更可靠呢?要求用事实说话,不夹杂过于感情化的描写,以数据、事实描述来代替形容词。
3、讲究编写求职简历的原则
编写求职简历不管是采用什么样的技巧,都要注意坚持写作的原则,求职简历要写的精简,太多的内容堆积并有优势。就调查显示,百分之九十的招聘官都不想看到繁琐的简历,简历讲究的是精炼、特长。
数据分析表范文(篇十一)
基本信息
姓名:
两年以上工作经验|男|26岁(19XX年3月11日)
居住地:广州
电 话:154******(手机)
最近工作[10个月]
公 司:XX有限公司
行 业:通信/电信运营
职 位:数据分析专员
最高学历
学 历:
专 业:
学 校:xx大学
自我评价
本人诚实正直,对工作认真负责,吃苦耐劳,善于创新,敢于迎接挑战及承担责任,富有工作热情,乐业敬业,善于与人沟通。营造和谐的'工作氛围,注重人性化管理,能带动下属充分发挥团队合作精神,为公司创造效益!
求职意向
到岗时间:一个月之内
工作性质:全职
希望行业:通信/电信运营
目标地点:广州
期望月薪:面议/月
目标职能:数据分析专员
工作经验
20xx/11—20xx/9:XX有限公司[10个月]
所属行业:通信/电信运营
数据部 数据分析专员
1、数据库日常简单维护,熟悉SQL查询语句。
20xx/5 — 20xx/10:XX有限公司[1年5个月]
所属行业:通信/电信运营
数据部 数据分析专员
1、日常办公用品采购,基站租赁合同处理及工程物资采购。
2、ERP项目支出入账及物资装配,投诉工单处理,通信基站故障处理。
教育经历
20xx/9— 20xx/6 大学计算机科学与技术 本科
证书
20xx/12 大学英语四级
语言能力
英语(良好)听说(良好),读写(良好)
数据分析表范文(篇十二)
说到量化分析,它是一种方法,如果说数据挖掘是“外家功”,那么量化分析就是“内功心法”。
在大数据概念不断升温、数据分析技术不断成熟的今天,我们已经不再对数据分析、数据报表陌生。而我也不例外,我的数据分析团队每天都会呈现出不同的数据报表和数据分析模型。
销售量的同比环比,成本利润对比;
决议民意调查统计结果分析表;
年度销售情况总结分析报告;
顾客购物行为分析报告;
工作效率统计表,经营管理仪表盘等等。
因为有了智能BI系统作支撑,展现的报表是完美的,华丽的。而在企业中面对这些主题的数据分析,我们也会毫不犹豫地利用各种数据分析工具和方法,对某个特定主题进行ETL,建立分析模型。可是我们往往忘记分析的目的和根本问题,经常性地沉迷于技术分析、报表展示。所以我们想挖掘企业管理和经营问题实质的时候,量化分析就变得尤为重要了。以求对事物存在和发展的规模、程度等做出精确的数字描述。让数据分析从根本意义上服务于业务管理,这才是分析的终极目标。
“外家功”与“内功心法”
说到量化分析,它是一种方法,如果说数据挖掘是“外家功”,那么量化分析就是“内功心法”。虽然量化分析不能解决任何计算机语言逻辑错误,没有具体计算机语言表达规则,不能建立如关联分析、回归分析等具体清晰的统计分析方法。
但是量化分析通过数据收集,指标确定,信息的整理对结果不仅仅是展示,而是做全面的、完整的描述,全面解答根本问题。我们经常在总结汇报会议上看这样的场景:“在本次活动中,销售比去年同期增长了30%,其中某品牌中A型号和B型号对比,A型号比B型号销量高出50%。”如果这样陈述再配上图表展示,看起来好像就是一个很好的数据分析总结汇报了。可是问题来了,为什么A型号要比B型号销量好,我们是停止B型号的采购,还是加大A型号的引进。从这个分析当中我仍然不知道如何处理,似乎困惑的问题和想要的答案都没有反映出来。那我们为什么要收集这些数据,为什么要设定这些指标,又为什么要分析这些信息?显然这是一个没结尾的故事,即使有华丽的过程,却没有揭示实质的问题。
建立量化分析体系
有了量化分析,目的是建立量化分析体系,而在企业要建立量化体系,首先必须学会找出根本问题,要用类似“五个为什么”的方法揭示根本问题。建立企业量化体系不是单枪匹马就可以完成的,我们需要更多的人给我们提出“为什么”,让企业更多的人参与到规划量化体系蓝图的“艺术创作”中去。让我们的企业问题蓝图更加完整。其次对于建立的问题,要不断地检查和分析,看看我们揭示的问题是否考虑了需要的信息、指标和数据。揭示的问题是否有效、问题是否符合量化逻辑等等。我们要在企业的管理和运营中不断检查自己的量化体系蓝图。最后有了完成有效的量化蓝图,就需要我们进行确定指标,明确信息,采集数据了,这时候再也不会在数据的海洋里迷失了航程。确定指标使得量化体系有了方向,明确信息和采集数据是量化体系的技术手段。量化体系是分析的目标,数据分析是揭示问题的工具和资源。
当大数据时代到来的时候,很多IT技术应运而生的时候,当所有的产品和解决方案告诉我们能从数据中淘出宝藏,能用信息构建知识体系的时候,我们是不是应该冷静问问我们自己的企业为什么要分析。面对我们多年沉积下来的数据,我已经建立面向多个主题的、多个维度的数据仓库或者是数据集市,甚至看似我们也形成了数据分析体系。
但是这样的体系是不是客观的反映了企业的问题和现状,有没有描绘完整的解决办法。数据需要量化,企业的问题更需要量化,绘制企业问题量化体系是迎合了大数据时代下的企业管理。只有这样才不失数据分析的根本。
数据分析表范文(篇十三)
项目数据分析
南京融捷项目数据分析事务所简介了某企业的例子
(1)项目数据分析报告简介:
项目数据分析报告是“项目数据分析师”以客观的态度和谨慎的作风,通过科学的市场调研,运用专业的分析方法,秉承公正的原则,对项目的可行性进行全方位的分析及评估,为投资方的决策提供科学、严谨的依据,降低项目投资的风险,主要服务对象为中小型企业、国内外银行、投融资公司、政府组织等机构。
(2)项目数据分析报告内容:
项目数据分析报告的主要内容包括:项目提出的背景、项目基本情况(建设内容、建设规模、投资总额、市场前景、经济效益、社会效益、地理位置、交通条件、气候环境、人文环境、优惠政策等)、项目存在的问题、项目的战略分析、项目的管理架构分析、项目预测分析(市场、收入、成本)、财务分析(获利能力、偿债能力、发展能力)、不确定性分析、风险分析、结论和建议等。
(3)项目数据分析报告案例:
某企业项目数据分析报告案例样本
目录
第一章 项目概述
此章包括项目介绍、项目背景介绍、主要技术经济指标、项目存在问题及建议等。
第二章 项目市场研究分析
此章包括项目外部环境分析、市场特征分析及市场竞争结构分析。
第三章 项目数据的采集分析
此章包括数据采集的内容、程序等。
第四章 项目数据分析采用的方法
此章包括定性分析方法和定量分析方法。
第五章 资产结构分析
此章包括固定资产和流动资产构成的基本情况、资产增减变化及原因分析、自西汉结构的合理性评价。
第六章 负债及所有者权益结构分析
此章包括项目负债及所有者权益结构的分析:短期借款的构成情况、长期负债的构成情况、负债增减变化原因、权益增减变化分析和权益变化原因。
第七章 利润结构预测分析
此章包括利润总额及营业利润的分析、经营业务的盈利能力分析、利润的真实判断性分析。
第八章 成本费用结构预测分析
此章包括总成本的构成和变化情况、经营业务成本控制情况、营业费用、管理费用和财务费用的构成和评价分析。
第九章 偿债能力分析
此章包括支付能力分析、流动及速动比率分析、短期偿还能力变化和付息能力分析。
第十章 公司运作能力分析
此章包括存货、流动资产、总资产、固定资产、应收账款及应付账款的周转天数及变化原因分析,现金周期、营业周期分析等。
第十一章 盈利能力分析
此章包括净资产收益率及变化情况分析,资产报酬率、成本费用利润率等变化情况及原因分析。 第十二章 发展能力分析
此章包括销售收入及净利润增长率分析、资本增长性分析及发展潜力情况分析。
第十三章 投资数据分析
此章包括经济效益和经济评价指标分析等。
第十四章 财务与敏感性分析
此章包括生产成本和销售收入估算、财务评价、财务不确定性与风险分析、社会效益和社会影响分析等。 第十五章 现金流量估算分析
此章包括全投资现金流量的分析和编制。
第十六章 经营风险分析此章包括经营过程中可能出现的各种风险分析。
第十七章 项目数据分析结论与建议
第十八章 财务报表
第十九章 附件
数据分析表范文(篇十四)
姓名:
国籍:中国
个人照片
目前住地:
所在地
民族:族
户籍地:
所在户籍
身高体重:XXX cm,XX kg
婚姻状况:
未婚
年龄:XX岁
求职意向及工作经历
人才类型:
普通求职
应聘职位:
工作年限:X
职称:XXX
求职类型:均可
可到职日期:即可工作时间
月薪要求:xxx-xxx
希望工作地区:
希望地区
工作经历:
-至今xx电子商务有限公司(8个月)
信息技术中心数据分析部|数据分析副经理| 6001-8000元/月
工作描述:
管理部门内部四个小组日常工作。
一..数据分析组:
1.根据需求编写sql,导出数据并处理。
2.与各系统沟通,整理制作各个系统导入数据模板。
3.根据各种数据的不同分析功能,制定多维度数据分析模型,为公司提供运营建议。
4.生产环境各系统数据问题协调安排处理。
二.报表分析组:
1.与需要制作报表的相关中心部门进行需求沟通,确认导出时间、频率、范围等。
2.安排编写新报表sql,导出数据,制作报表。
3.参与各部门报表方面知识培训。
4.分析同行业数据资料,找出优劣势。
5.跟进BO、BW报表开发。
三.权限组
1.制定权限审批规范
2.梳理各权限体系的权限相关流程
3.公司业务系统的帐号维护文档编制与管理。
4.定期出据各个业务系统帐号变动的报告。
四.数据审核组
1、制定商品、供应商、品牌各字段书写规则和审批规则
2、对各方主数据内容维护、修正、整理、审核
3、组织进行主数据内容方面问题的检查、校验
4、优化各个系统主数据校验功能和审批流程
技术中心数据管理部|主数据/数据分析主管| 4001-6000元/月
工作描述:
1.对于采销新提报商品SKU、品牌信息、供应商信息、价格信息等进行审核;
2.对于每日销售订单情况进行核查,鉴别属于行业客户的订单进行取消操作;
3.对于各个部门的报表需求进行跟进并且制作相应的报表,BO、BW报表;
4.对于各个系统之间出现的问题进行收集、整理,并给出解决方案至系统负责人;
5.给其他部门培训各个系统的操作和注意事项。
管理经验:
汇报对象:部门经理|下属人数:13人|直接下属:基层主管|年收入:万/年
业绩描述:带领部门同事最快完成各项日常工作。在部门7人时,根据制定的审批要求,日审批新增SKU达10000个(不包含平日部门报表、订单核查工作),多次提前排期安排时间完成任务。
离职原因:加班情况比较严重,人员补足长时间不到位。
集团有限公司(3个月)
大客户支持中心|报表制作专员| 2001-4000元/月
IT服务(系统/数据/维护)/多领域经营|企业性质:国企|规模:10000人以上
工作描述:负责整个部门的报表工作,包含每日呼入、呼出报表,员工各项KPI指标报表,薪酬统计报表等。
- 北京xx信息咨询中心(1个月)
经理助理/秘书/文员| 1000-2000元/月
专业服务(咨询/财会/法律等) |企业性质:民营|规模:20-99人
教育背景
毕业院校:xx大学
最高学历:本科
毕业日期:
所学专业:
第二专业:
教育经历:
语言能力:
外语:
英语:良好
国语水平:良好
自我评价:
熟练应用mindmanager、visio及office办公软件。精通分类汇总、数据透视、高级筛选、公式等Excel功能,思维逻辑性强。熟悉PL/SQL、Toad数据库使用,可简单修改SQL及执行。熟悉SAP、DRAGON、ATG、Portal、POP等电子商务应用系统。具备良好的团队精神和协作能力,带领部门10人出色完成各项工作,多次得到公司总经理的认可。较强的语言组织能力、沟通能力,和各个部门领导、同事关系融洽。工作敬业、进取、踏实稳重,责任心强,对工作认真负责、自律性强、喜欢挑战性工作。
数据分析表范文(篇十五)
【摘要】教学测量与教学评价是教学活动的有机组成部分。以教学测量与教学评价中考试分析报告生成为研究对象,根据目前大数据分析的研究,将元数据模型、数据立方体、多维度数据分析报表模型、数据挖掘算法相结合,设计实现了一个大数据分析的通用考试统计分析报告生成系统。
【关键词】维度 报表 指标优化
教学测量与教学评价是教学活动的有机组成部分。教学测量与教学评价作教学活动,担负了诊断教学、激励师生、调控教学过程的任务。这些评价通常是学习者学过程中历次考试数据的分析与对比,以报表图表的报告形式展现给管理者及师生。如何采集、保存海量的考试数据;如何从多视角分析、对比这些数;如何快速、体系化制作统计分析报告。这些问题已成为影响教学评价工作的瓶颈。
以教学测量与教学评价中考试分析报告生成为研究对象,根据目前大数据分析的研究,将元数据模型、数据立方体、多维度数据分析报表模型、数据挖掘算法相结合,设计实现了一个大数据分析的通用考试统计分析报告生成系统。
一、适用于大数据分析的教学测量评价数据的存储结构
系统采用三层数据库结构把不同类型,不同层次的考试信息分布在不同层次的数据库上,以解决数据集中所带来的海量数据问题、基础编码冗余及针对性问题。其中:顶层公共库(TOP公共库),用于存放各类型、各层次考试的基本信息,以及跨不同类型及层次考试的统计数据。第二层公共库用于存放某种类型的考试基础数据、统计数据。第三层为考次库用于存放某次考试的试卷、成绩等数据。
二、报表技术
表就是用表格、图表等格式来动态显示数据,可以用公式表示为:“报表 = 多样的格式 + 动态的数据”。
报表可分为如下几类:列表式:表内容按照表头顺序平铺式展示,便于查看详细信息。一般基础信息表可以用列表式体现。多用于展示客户名单、产品清单、物品清单、订单、发货单等单据或当日工作记录,当日销售记录等记录条数比较少的数据。摘要式:使用频率最高的一种报表形式,多用于数据汇总统计。如按人员汇总回款额、客户数等;按日期分组汇总应收额、回款额等。.摘要式报表和列表式报表唯一的差别是多了数据汇总的功能。矩阵式:主要用于多条件数据统计。如:按照客户所有人和客户所属地区两个值汇总客户数量。矩阵式报表只有汇总数据,但是查看起来更清晰,更适合在数据分析时使用。
表的绘制方式,大致可以分为SQL画布方式,Cell单元格方式和两者结合型:SQL画布方式报表工具的特点是将报表水平分割成若干个区域,在各个区域上放置报表组件,报表组件位置可以是任意的,各组件可以互相重叠。画布式报表工具的优点 是可以做到可视化数据绑定,组件位置自由。缺点是插入列、组件对齐困难,画表格线经常出现线与线之间的错开现象。这种报表只是很好的解决了"报"的问题, 但对于"表"的问题依然存在。CELL单元格式报表工具,是将报表看作是由一系列连续的单元格组成的区域。要改变报表组件(一般是文本或图形)的位置,只能通过改变行高列宽方式进行,组件之间 不能重叠,单元格可以合并。单元格式报表工具的优点是画线,插入列,多行列标题绘制非常方便,但格子中的动态数据绑定,往往需要手写公式来进行。这种报表 只是很好的解决了"表"的问题,但对于"报"的问题依然存在。
两者结合型报表工具,融合上面两种报表工具的优点,使用户可以可视化地动态绑定数据,也可以象Excel一样来画线,从而大大提高了报表设计的效率。
三、基于维度的报表设计、生成方法
维度:用于确定参与统计计算的对象范围
属性:用于统计计算的对象属性
指标:维度+属性+统计方法
数据字典:描述属性的存储信息、维度定义信息
维度和属性,从概念上讲是截然不同的东西;从实现上讲(表字段)有交 叉。例如分数字段,在进行平均成绩统计时是属性;在进行一分一档统计时 是维度。维度和属性要分别定义。
属性,从概念上讲与维度信息无关。他们都是对事物的某种特性的量化描述。任何事物的不同特性之间不具有函数关系(一个特性无法决定另一个特 性),否则这些特性应当合并。属性在系统中不应有重复存储,换句话说任何属性只能唯一地存储在系统的某一个表的某一列中。
属性与维度在实现上存在一定的相关性。由于关系数据库的局限,在数据结构设计时,不得不将信息分别存储在不同的数据表中。例如成绩信息我们根据考次、科目维度信息将不同的考次、科目的成绩存储在了不同的表中。
我们认为报表的行与列及表头是观察与分析数据的维度;行列的交叉点上的单元格代表了若干维度的所确定的数据集及其上的集聚计算(我们称数据集及其上的集聚计算为指标)。根据维度可以确定指标,用户只需要了解业务中维度的概念,无需了解数据集的概念及数据的存储结构就可以完成报表的设计生成。这大大提高了本系统的可用性、易用性。
四、结束语
参考文献:
[1]栾丽华,吉根林;《决策树分类技术研究》[J];计算机工程;
2004
[2]
examples:Acasestudy[C].MichieDExpertSystemsinthel-
ectronicAge,Scotland:EdinburghUniversityPress,1979
:168-201.
[3],
1986,1(1):81-106.
注:本论文是河北省教育厅人文社会科学研究项目(招生考试专项)课题” 基于大数据的学业、教学过程评价系统的应用与研究”的研究成果,课题编号:KSZX201428。
数据分析表范文(篇十六)
关键词:大数据;统计学
一、大数据与统计学的区别
统计知识在大数据的利用研究中有多样化的应用形式,主要是对“大数据”进行肢解,对爆炸增长的数据信息进行搜索、分类以及整合主要依赖于统计学。因此,大数据的相关研究在一定程度上运用了统计学的知识。但是,大数据的使用尚未被统计学这门学科充分利用,这主要是因为大数据的运用方式,使用模式和统计学之间存在着重要差异。统计学主要利用的是样本统计资源,样本主要在根据既定的概率标准从总体中抽样调查,但是随机抽样调查是带有成本属性的,例如消耗时间、资本投入的成本等。在样本数量逐渐增加的情况下,样本估计的误差范围是伴随着总体样本数量的增大而逐渐增加的,这是样本统计学不能忽视的缺点。大数据时代最具代表性的就是海量的信息数据化以及即时电子商务信息,大数据在整体上呈现出“总体样本数据化”的趋势,这样的特征恰好可以补充样本统计的弊端。大数据环境下的整体样本统计即使可以囊括全部的样本容量,但是因为很多情况下数据具有非结构性和半数据化的特征,而且大量的数据资源呈现的是重视尾部分布的状态,方差、标准差等标准化的方法变得毫无意义,整体依靠性和不稳定性经常会超越经典时间内的时间序列的整体假设性,所以概率论的应用范围呈现狭窄化的发展趋势。因此,统计学在利用大数据进行样本统计的过程中,可以对整体上的数据资源进行融合和选择,这和样本统计中的数据化处理技术存在异曲同工之妙。
二、大数据时代统计学教育的发展
1.全面培养人才素质
统计学专业的学生需要具备良好与人交往能力。统计学的学生很多都是理科出身的学生,不善于交际。但是在日常的工作中,有数据经验的科学家应该经常和每个部门的工作人员交流,协同工作。怎么样才能让颇具专业性的数据分析结果让普通的老百姓也可以读懂,让每个部门的工作人员都能无障碍地理解,这是不容易做到的。要训练自己的交往能力和沟通技能,主动地参加演讲活动是不错的渠道,演讲活动锻炼了演讲者的自信,在整个演讲的过程中,能否清晰地表达自己的思想以及给人以信服力是至关重要的。需要培养数据常识,广其见闻。数据科学家经常面对各种各样的海量数据,并需要从这些数据中挖掘出有价值的信息,这就需要数据科学家具有强烈的数据敏感性。对数据的敏感程度的训练不是一蹴而就的,要经过长时间的积累和数据分析工作的磨练,同时也可以根据阅读数据分析材料积累阅历,提升对数据资源的敏感程度。
2.培养应用型人才
大数据时代培养的数据科学家需要两方面的基本素质,第一是概念性,也就前面所说的数据科学家需要掌握的基本素养和专业知识;第二是实践性,也就是本文中我们提及的应用型人才,也就是实际操作中处理数据的能力。在高校开展大数据分析研究生学科,最大的问题是没有可用的数据,这就需要高效与大数据企业合作,进行研究生的联合培养,注重学生的实际操作能力,这里面涉及到我们的应用统计学专业硕士的双导师培养制度,一名校内导师一名校外导师,校内导师注重学生的概念性,校外导师注重学生的实践性,学生通过在校外导师单位的实习,从而熟悉并且掌握实际工作中所需要的技能。
3.促进统计与数学、计算机学科合作
“大数据”时代需要的海量数据分析资源仅仅凭借统计学科单一学科的发展是不能满足发展需求的,大数据的数据结构性特征已经抛弃了传统意义上的数据分析模式的非智能化框架,而且数据分析需要利用新型的数据运算方式以及计算机技能分析,这也是进行数据分析工作的拦路虎。所以,数据科学家的成长仅仅依靠单一的统计学科知识的学习是远远不够的,其需要的是数学、计算机和统计学三门学科融合发展,紧密结合。三门学科之间交叉发展,融会贯通,这样既可以发挥学科的优势资源,同时也能弥补其他学科的弊端。
三、结语
数据信息的爆炸式增长使我们在使用统计数据处理信息时需要更多的数据资源,更有甚者,在很多情况下可以利用全面化的数据,数据资源不再是制约统计分析的唯一因素,大数据前提下的统计学效用和粘合度预测的准确程度不断提升,而且可以发现诸多在样本统计基础上未能显现的细节。统计学关键优势就是“见微知著”,也是统计学在数据环境下的约束性妥协。在海量数据汹涌袭来的年代,充分发挥统计学的优势,和大数据资源整合发展,实现“以小见大”和“由繁入简”的有效结合。
参考文献:
[1]田茂再.大数据时代统计学重构研究中的几个热点问题[J].统计研究,2015,05:3-12.
[2]刘春杰.大数据时代统计学教育面对挑战的应对[J].凯里学院学报,2015,03:29-32.
[3]大数据时代统计学的重构与创新――首届“大数据与应用统计国际会议”述评[J].统计研究,2015,02:3-9.
数据分析表范文(篇十七)
大数据报告模板 篇一:大数据分析平台的需求报告模板 大数据分析平台的需求报告 提供统一的数据导入工具,数据可视化工具、数据校 验工具、数据导出工具和公共的数据查询接口服务管理工具 是建立大数据分析平台的方向。 一、项目范围的界定 ......
篇一:[如何做数据分析报告]手把手教你做一份数据分析报告 报告是项目的结果展示,是数据分析结果的有效承载形式。一份思路清晰,言简意赅地 数据分析报告能直戳问题痛点,提高沟通效率,获得领导赏识。 对于数据分析报告,首先要有一个概念......
以下是为大家整理的关于2021年第四季度预备党员思想汇报的文章16篇 , 欢迎大家参考查阅!2021年第四季度预备党员思想汇报篇1敬爱的党组织:一直以来都觉
报告,中文字[释义]动态综合材料向上级报告,也指综合材料向群众报告。报告是向上级机关报告工作、反映情况、提出意见或建议、答复上级机关询问的公文。 以下是为大家整
说话就是说话声明谈话,或演讲和流行作品。 以下是为大家整理的关于在2021年中层以上领导干部集体廉政谈话会议上的讲话的文章5篇 ,欢迎品鉴!【篇一】在2021年
清明节,又称郊游节,是中国的传统节日之一,也是最重要的祭祀节日。在这一天,人们将一个接一个地祭祀祖先。中国的清明节起源于周朝。1935年,xxx政府将每年的4
在农村振兴工作中,党员干部要坚持党的建设,带领农村振兴,不断提高基层党组织的领导水平和凝聚力,激发广大党员群众建设美好家园的内生动力。 以下是为大家整理的关于党
一个例子可以是虚构的故事,也可以是客观事实。1 可作为依据的先例。2 可作为示例的代表性事物。 以下是为大家整理的关于政治表现及具体事例的文章3篇 ,欢迎品鉴!
应急预案是指在自然灾害、重大事故、环境危害和人为破坏等突发事件发生时的应急管理、指挥和救援预案。 以下是为大家整理的关于恶劣天气条件下的应急预案的文章3篇 ,欢
Measure是一个发音为Cu-ograve的汉语单词shī,它意味着针对特定情况所采取的治疗。 以下是为大家整理的关于落实党委主体责任存在问题整改措施的文章3
党课是中国xxx为教育党员和积极分子而组织的一门课。各级党组织定期通过党课向党员和积极分子宣传党的路线、方针、政策开展党性党纪党的基本知识教育。党课是每个xxx
数据分析表范文(篇十八)
数据分析报告格式
分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。
我认为一份好的分析报告,有以下一些要点:
首先,要有一个好的框架,跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;
第二,每个分析都有结论,而且结论一定要明确,如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;
第三,分析结论不要太多要精,如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;
第四、分析结论一定要基于紧密严禁的数据分析推导过程,不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;
第五,好的分析要有很强的可读性,这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站在读者的角度去写分析邮件;
第六,数据分析报告尽量图表化,这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从;
第七、好的分析报告一定要有逻辑性,通常要遵照:1、发现问题--2、总结问题原因--3、解决问题,这样一个流程,逻辑性强的分析报告也容易让人接受;
第八、好的分析一定是出自于了解产品的基础上的,做数据分析的产品经理本身一定要非常了解你所分析的产品的,如果你连分析的对象基本特性都不了解,分析出来的结论肯定是空中楼阁了,无根之木如何叫人信服?!
第九、好的分析一定要基于可靠的数据源,其实很多时候收集数据会占据更多的时间,包括规划定义数据、协调数据上报、让开发人员提取正确的数据或者建立良好的数据体系平台,最后才在收集的正确数据基础上做分析,既然一切都是为了找到正确的结论,那么就要保证收集到的数据的正确性,否则一切都将变成为了误导别人的努力;
第十、好的分析报告一定要有解决方案和建议方案,你既然很努力地去了解了产品并在了解的基础上做了深入的分析,那么这个过程就决定了你可能比别人都更清楚第发现了问题及问题产生的原因,那么在这个基础之上基于你的知识和了解,做出的建议和结论想必也会更有意义,而且你的老板也肯定不希望你只是个会发现问题的人,请你的那份工资更多的是为了让你解决问题的;
十一、不要害怕或回避“不良结论”,分析就是为了发现问题,并为解决问题提供决策依据的,发现产品问题也是你的价值所在,相信你的老板请你来,不
是光让你来唱赞歌的,他要的也不是一个xxx的工具,发现产品问题,在产品缺陷和问题造成重大失误前解决它就是你的分析的价值所在了;
十二、不要创造太多难懂的名词,如果你的老板在看你的分析花10分钟要叫你三次过去来解释名词,那么你写出来的价值又在哪里呢,还不如你直接过去说算了,当然如果无可避免地要写一些名词,最好要有让人易懂的“名词解释”;
十三、最后,要感谢那些为你的这份分析报告付出努力做出贡献的人,包括那些为你上报或提取数据的人,那些为产品作出支持和帮助的人(如果分析的是你自己负责的产品),肯定和尊重伙伴们的工作才会赢得更多的支持和帮助,而且我想你也不是只做一锤子买卖,懂得感谢和分享成果的人才能成为一个有素养和受人尊敬的产品经理。
数据分析表范文(篇十九)
大数据报告模板 篇一:大数据分析平台的需求报告模板 大数据分析平台的需求报告 提供统一的数据导入工具,数据可视化工具、数据校 验工具、数据导出工具和公共的数据查询接口服务管理工具 是建立大数据分析平台的方向。 一、项目范围的界定 ......
篇一:[如何做数据分析报告]手把手教你做一份数据分析报告 报告是项目的结果展示,是数据分析结果的有效承载形式。一份思路清晰,言简意赅地 数据分析报告能直戳问题痛点,提高沟通效率,获得领导赏识。 对于数据分析报告,首先要有一个概念......
以下是为大家整理的关于独一无二的运动会加油稿的文章3篇 , 欢迎大家参考查阅!第一篇: 独一无二的运动会加油稿最新运动会加油稿1挫折能够毁灭一个人,也能够造
党的建设不仅是一个党的工作概念,也是一个党务概念。是指党为保持自身性质而进行的一系列自我完善活动,不仅包括党务工作,还包括党的政治建设、思想建设、组织建设、作风
违规是指违反某些规定。但是&ldquo违规&rdquo&ldquo在世界上仪表&rdquo该词并非指某一特定条款。这仪表&rdquo词语指双方同意的所有条款。
工作总结jobsummary worksummary是最常见和通用的年终总结、半年总结和季度总结。从内容上讲,工作总结就是对一段时间内的工作进行全面系统的总体检
邀请信用于邀请他人参加各种活动。 以下是为大家整理的关于社团文化节邀请函的文章3篇 ,欢迎品鉴!社团文化节邀请函篇1尊敬的北京理工大学:您好,中国农业大学社
这份报告被广泛使用。根据上级的部署或工作计划,每完成一项任务都要向上级报告,反映工作的基本情况、工作中的经验教训、存在的问题和今后的工作思路。 以下是为大家整理
护士被称为白衣天使。 以下是为大家整理的关于妇产科护士年终述职报告的文章13篇 ,欢迎品鉴!【篇1】妇产科护士年终述职报告一、各项工作指标:20x年住院分娩
共产主义青年团团员是指中国共产主义青年团团员。共产主义青年团的成员应该服从xxx的领导,相信共产主义。他们是仅次于共产主义者的共产主义者。 以下是为大家整理的关
工作总结jobsummary worksummary是最常见和通用的年终总结、半年总结和季度总结。从内容上讲,工作总结就是对一段时间内的工作进行全面系统的总体检
这份报告被广泛使用。根据上级的部署或工作计划,每完成一项任务,一般都要向上级写一份报告,反映工作的基本情况、工作中的经验教训、存在的问题和今后的工作思路,以获得
上一篇:劳动仲裁答辩状范文(通用十篇)
下一篇:中药毕业论文范文(通用九篇)