您现在的位置是:首页 > 心得体会
第二单元《因数与倍数》 因数与倍数单元整理视频
第二单元《因数与倍数》 篇1
教学内容
本单元包括三部分内容:1.因数与倍数的概念;2.被2、5、3整除的数的特征;质数和合数。
教学目标
1. 使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2. 使学生通过自主探索,掌握2、5、3的倍数的特征。
3. 逐步培养学生的数学抽象能力。
教学重点
理解因数、倍数、质数、合数等概念的含义。
教学难点
从本质上理解这些概念之间的联系和区别;掌握3的倍数的特征.
学情分析
通过四年多的数学学习,学生已经掌握了大量的整数知识(包括整数的认识、整数四则运算),本单元让学生在前面所学的整数知识基础上,进一步探索整数的性质。学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用,同时,也是为了减少这一单元的理论概念,教材不再把它作为正式教学内容,而是作为一个补充知识,安排在“你知道吗?”中进行介绍。由于这部分内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在过去的教学中,一些教师往往忽视概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度。再加上有些教师在考核时使用一些偏题、难题,导致学生在学习这部分知识时觉得枯燥乏味,体会不到初等数论的抽象性、严密性和逻辑性,感受不到数学的魅力。所以在教学中应注意以下两点: (1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。
课时安排
6课时
第一课时 因数和倍数
教学内容
因数与倍数,p12-13例1及p15页1、2题。
教学目标
1.从操作活动中理解因数与倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的意义
教学难点:因数和倍数等概念间的联系和区别。
教学过程:
一、认识因数与倍数
1、观察主题图,根据主题图的不同情况写出乘法算式和除法算式。
112=12 26=12 34=12
121=12 62=12 43=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
2、观察并回答。
(1)这三组乘法、除法算式中,都有什么共同点?
(2)像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?看书第12页。
(3)这样的三个数,我们也可以怎样说?(2和6是12的因数),请大家也像这样把其余的两组数也说一说。
请看教材12页,2和6与12的关系还可以怎么说?
(4)也就是说2和6与12的关系是因数和倍数的关系,这几组数中,谁和谁还有因数和倍数的关系?
(5)提问:能不能说12是12的因数呢?
(6)小结:上面这三组算式中,我们知道:1、2、3、4、6、12都是12的因数。
3.讨论:23÷4=5……3,提问:23是4的倍数吗?为什么?
谁能举一个算式例子,并说说谁是谁的倍数,谁是谁的因数?
4.讨论:03 010 0÷3 0÷10
提问:通过刚才的计算,你有什么发现?
注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。
二、巩固新知
1.下面每一组数中,谁是谁得因数,谁是谁得倍数?
16和2 4和24 72和8 20和5
2.下面得说法对吗?说出理由。
(1)48是6的倍数
(2)在13÷4==3……1中,13是4的倍数
(3)因为36=18,所以18是倍数,3和6是因数。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。记住自己的学号,听老师说要求,符合要求的同学请举手。
(1)( )是4的倍数
(2)( )是60的因数
(3)( )是5的倍数
(4)( )是36的因数
本节课应当让学生明确以下几个问题:(1)因数、倍数必须在整数的范围内研究。
第二课时:一个数的因数的求法
教学内容 一个数的因数的求法(p13页例题1及p15练习题2)
教学要求
1.通过学习,使学生掌握用不同的方法求一个数的因数的方法。
2.通过求一个数的因数方法,知道一个数的因数的个数是有限的。
3.通过不完全归纳法得出一个数的因数的特点,体现从具体到一般的解题思路。
教学重点:学会求一个数的因数
教学难点:弄清为什么一个数的因数的个数是有限的。
教学过程:
一、复习旧知:
1.根据算式:48=32说说谁是谁的因数?谁是谁的倍数?
2.根据算式:63÷7=9说说谁是谁的因数?谁是谁的倍数?
3.判断:1.2÷0.2=6,我们能说0.2和6是1.2的因数吗?1.2是0.2的倍数,也是6的倍数吗?
4.注意:本单元讲的因数和前面讲的乘法方式各部分名称的因数有所不同,这里讲的的倍数,也和前面讲的“倍”有所不同。
二、探究新知
1.出示p13例题1:18的因数有哪几个?
(1)提问:怎样去求18的因数呢?同位同学互相讨论,要求不能遗漏,看谁找得又对又快?
(2)汇报:第一种方法,列出积是18的乘法算式,得到18得因数有:1、2、3、6、9、18。第二中方法,列出被除数是18的除法算式,得到18的因数有:1、2、3、6、9、18。
(3)无论是乘法算式还是除法算式,在思考时要注意什么?(要从最小的数找起,都时非0的整数)
我们把18的因数也可以像这样表示。如图:
18的因数
1、2、3、
6、9、18
这个圈我们称它为集合圈,这种表示方法就是用集合圈表示因数。
2.完成p13做一做
(1)同学们找出30的因数,找出36的因数
独立完成后,汇报自己找因数的方法。
30的因数有:1、2、3、5、6、10、15、30
36的因数有:1、2、3、4、6、9、12、18、36
(2)观察,18的最小因数是( ),最大因数是
30的最小因数是( ),最大因数是( )
36的最小因数是( ),最大因数是( )
提问:通过观察,你发现了什么?大家再数一数这三个数的因数的个数,你又发现了什么?
(3)一个数的因数有什么特点?
特点:最大的因数是它本身,最小的因数是1;一个数的因数的个数是有限的
三、巩固新知
1.完成p15第2题
学生自己独立完成,讲评时让学生说一说,是怎么想的?
2.判断
(1)12的因数有:1、2、3、4、6、12。
(2)整数32的因数共有4个。
(3)自然数a的最大因数是a,最小因数是1。
(4)一个数的因数都小于这个数。
第二单元《因数与倍数》 篇2
第二单元 因数与倍数
(一)单元教学目标
1. 使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2. 使学生通过自主探索,掌握2、5、3的倍数的特征。
3. 逐步培养学生的数学抽象能力。
(二)单元教学重难点
1.重点:
(1)掌握因数、倍数、质数、合数等概念的联系及其区别。
(2)掌握2.5.3的倍数的特征。
2.难点:
质数和奇数的区别
第一课时
因数与倍数
教学内容:教材第1——14页例1和例2。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。了解一个数的因数是有限的,倍数是无限的;能较熟练地找一个数的因数和倍数。
2.培养学生的观察能力,抽象、概括的能力。
3.渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
教学重点:
1、理解因数和倍数的含义。
2、掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、创设情境,引入新课
在数学中,数与数之间也存在着多种关系。如在乘法算式中,两个因数相乘得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系。在整数乘法中还有另外一种关系,这一节课我们就来一起探讨因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
(出示12页的图1)观察上面的图,你看到了什么?用算式怎样表示?
师:像这样,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。
问:因为2×6=12,所以12是倍数,2和6是因数,这种说法正确吗?为什么?
师:在描述因数或倍数时,必须说清楚谁是谁的倍数或因数。不能单独说谁是倍数或因数,也就是说:因数和倍数不能单独存在,它们是相互依存的。
(出示12页的图2)从图上你可以列出怎样的算式?
根据算式,你知道谁是谁的因数,谁又是谁的倍数吗?
想一想,还有哪些数是12的因数?(组织学生在小组中讨论独立自交流,然后汇报。)
可以说12是12的因数吗?为什么?(12×1=12,1和12都是12的因数。)
11÷2=5……1。问:11是2的倍数吗?为什么?(不是,因为11除以2有余数。)
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
小结:在研究因数和倍数时,我们所说的数一般指整数,不包括0。根据上面的分析,我们可以得出:如果两个非零整数相乘得另一个整数,我们就说,前两个整数是另一个整数的因数,另一个整数是前两个数的倍数。
三、找因数。
1、出示例1:18的因数有哪几个?
从上面三组算式中,我们知识道12的因数有1、2、3、4、6和12。那么怎样求一个数的因数呢?下面让我们一起找找18的因数有哪些?
学生尝试完成,然后全班交流。 [板书:18的因数有: 1,2,3,6,9,18] 师说明:我们在写的时候一般都是从小到大排列的。
师:说说看你是怎么找的?(预设:方法一用乘法一对一对找,如1×18=18,2×9=18…;方法二用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;)教师引导学生按照一定的规律来找。
其实写一个数的因数除了这样写以外,还可以用集合表示:
师:18的因数中,最小的是几?最大的是几?
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
3、你还想找哪个数的因数?(30、5、42……)请你选择其中的一个在自练本上写一写,然后指名个别全班交流,其它同桌互查。
4、观察思考:一个数的最小因数是什么?最大的因数是什么?一个数的因数的个数是无限的吗?
5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?(汇报:2、4、6、8、10、16、……)
师:表示一个数的倍数情况,除了上面这种表示的方法外,还可以用集合来表示
怎么找到这些倍数的?为什么找不完?强调要写省略号。 (只要用2去乘1、乘2、乘3、乘4、…因为整数的个数是无限的,所以一个数倍数的个数也是无限的)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题。
补充提问:3和5的最小倍数分别是多少?有最大倍数吗?
由此大家可以总结出什么结论?
师总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?请学生对此部分教学内容疑问。如学生没有疑问,则教师提出下面问题,引发学生思考:因为5×0.8=4,所以5和0.8是4的因数,
4是5和0.8的倍数,对吗?为什么?
四、独立作业:
完成练习二1、4、5题
板书设计:
因数和倍数
(1)18的因数有:1、2、3、6、9、18
(2)2的倍数有2、4、6……
一个数最小因数是1
一个数的最小倍数是它本身
最大因数是它本身
没有最大倍数
一个数的因数个数是有限的
一个数的倍数个数是无限的。
教学反思:
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。因此,在教学中,我有两点最深的体会:研读教材,走进去;活用教材,走出来。
有关“数的整除”我已教学过多次,仅第一课时就与原教材有以下两方面的区别:(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习了解到以下信息:
[研读教材]
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“x是x的因数”时,两者都只能是整数。
“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。(以上几段话,均引自于《教参》)
[教学感悟]根据乘法算式说明因数和倍数的概念比以往用“约数和倍数”来描述,学生掌握得更快、更好。我想成功源自于充分利用了“因数”与“因数”、“倍数”与“倍”之间的共同点,使学生找到学习新概念的助推器。
[活用教材]
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?
因为5×0.8=4,所以5和0.8是4的因数,
4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比,所以别看题少,它所承载的数学问题还真不少呢?
[练习反馈]
练习二第1题“15的因数有哪些?15是哪些数的倍数?”第二问许多学生看到“倍数”不假思索,直接写出15的倍数。因此,此题教师应加强引导,帮助学生明确求“15是哪些数的倍数”其实质也就是求“15的因数有哪些”。
练习二第4题“找48的因数”,由于个数较多,因此部分学生有遗漏。看来乘法口算有待进一步加强。
练习二第5题“1是1、2、3、……的因数”,许多学生判断失误。在此,可引导学生先找出几个数的因数,然后通过观察推理得出1是所有整数(0除外)的因数;也可以通过“一个数最小的因数是1”的结论通过逻辑推理得出正确判断。
第二单元《因数与倍数》 篇3
(一)单元教学目标
1. 使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2. 使学生通过自主探索,掌握2、5、3的倍数的特征。
3. 逐步培养学生的数学抽象能力。
(二)单元教学重难点
1.重点:
(1)掌握因数、倍数、质数、合数等概念的联系及其区别。
(2)掌握2.5.3的倍数的特征。
2.难点:
质数和奇数的区别
第一课时
因数与倍数
教学内容:教材第1——14页例1和例2。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。了解一个数的因数是有限的,倍数是无限的;能较熟练地找一个数的因数和倍数。
2.培养学生的观察能力,抽象、概括的能力。
3.渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
教学重点:
1、理解因数和倍数的含义。
2、掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、创设情境,引入新课
在数学中,数与数之间也存在着多种关系。如在乘法算式中,两个因数相乘得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系。在整数乘法中还有另外一种关系,这一节课我们就来一起探讨因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
(出示12页的图1)观察上面的图,你看到了什么?用算式怎样表示?
师:像这样,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。
问:因为26=12,所以12是倍数,2和6是因数,这种说法正确吗?为什么?
师:在描述因数或倍数时,必须说清楚谁是谁的倍数或因数。不能单独说谁是倍数或因数,也就是说:因数和倍数不能单独存在,它们是相互依存的。
(出示12页的图2)从图上你可以列出怎样的算式?
根据算式,你知道谁是谁的因数,谁又是谁的倍数吗?
想一想,还有哪些数是12的因数?(组织学生在小组中讨论独立自交流,然后汇报。)
可以说12是12的因数吗?为什么?(121=12,1和12都是12的因数。)
11÷2=5……1。问:11是2的倍数吗?为什么?(不是,因为11除以2有余数。)
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
小结:在研究因数和倍数时,我们所说的数一般指整数,不包括0。根据上面的分析,我们可以得出:如果两个非零整数相乘得另一个整数,我们就说,前两个整数是另一个整数的因数,另一个整数是前两个数的倍数。
三、找因数。
1、出示例1:18的因数有哪几个?
从上面三组算式中,我们知识道12的因数有1、2、3、4、6和12。那么怎样求一个数的因数呢?下面让我们一起找找18的因数有哪些?
学生尝试完成,然后全班交流。 [板书:18的因数有: 1,2,3,6,9,18] 师说明:我们在写的时候一般都是从小到大排列的。
师:说说看你是怎么找的?(预设:方法一用乘法一对一对找,如118=18,29=18…;方法二用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;)教师引导学生按照一定的规律来找。
其实写一个数的因数除了这样写以外,还可以用集合表示:
师:18的因数中,最小的是几?最大的是几?
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
3、你还想找哪个数的因数?(30、5、42……)请你选择其中的一个在自练本上写一写,然后指名个别全班交流,其它同桌互查。
4、观察思考:一个数的最小因数是什么?最大的因数是什么?一个数的因数的个数是无限的吗?
5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?(汇报:2、4、6、8、10、16、……)
师:表示一个数的倍数情况,除了上面这种表示的方法外,还可以用集合来表示
怎么找到这些倍数的?为什么找不完?强调要写省略号。 (只要用2去乘1、乘2、乘3、乘4、…因为整数的个数是无限的,所以一个数倍数的个数也是无限的)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题。
补充提问:3和5的最小倍数分别是多少?有最大倍数吗?
由此大家可以总结出什么结论?
师总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?请学生对此部分教学内容疑问。如学生没有疑问,则教师提出下面问题,引发学生思考:因为50.8=4,所以5和0.8是4的因数,
4是5和0.8的倍数,对吗?为什么?
四、独立作业:
完成练习二1、4、5题
板书设计:
因数和倍数
(1)18的因数有:1、2、3、6、9、18
(2)2的倍数有2、4、6……
一个数最小因数是1
一个数的最小倍数是它本身
最大因数是它本身
没有最大倍数
一个数的因数个数是有限的
一个数的倍数个数是无限的。
教学反思:
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。因此,在教学中,我有两点最深的体会:研读教材,走进去;活用教材,走出来。
有关“数的整除”我已教学过多次,仅第一课时就与原教材有以下两方面的区别:(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习了解到以下信息:
[研读教材]
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“x是x的因数”时,两者都只能是整数。
“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。(以上几段话,均引自于《教参》)
[教学感悟]根据乘法算式说明因数和倍数的概念比以往用“约数和倍数”来描述,学生掌握得更快、更好。我想成功源自于充分利用了“因数”与“因数”、“倍数”与“倍”之间的共同点,使学生找到学习新概念的助推器。
[活用教材]
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?
因为50.8=4,所以5和0.8是4的因数,
4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比,所以别看题少,它所承载的数学问题还真不少呢?
[练习反馈]
练习二第1题“15的因数有哪些?15是哪些数的倍数?”第二问许多学生看到“倍数”不假思索,直接写出15的倍数。因此,此题教师应加强引导,帮助学生明确求“15是哪些数的倍数”其实质也就是求“15的因数有哪些”。
练习二第4题“找48的因数”,由于个数较多,因此部分学生有遗漏。看来乘法口算有待进一步加强。
练习二第5题“1是1、2、3、……的因数”,许多学生判断失误。在此,可引导学生先找出几个数的因数,然后通过观察推理得出1是所有整数(0除外)的因数;也可以通过“一个数最小的因数是1”的结论通过逻辑推理得出正确判断。
第二单元《因数与倍数》 篇4
(一)教学目标
1. 使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2. 使学生通过自主探索,掌握2、5、3的倍数的特征。
3. 逐步培养学生的数学抽象能力。
(二)本单元教材特点
1. 我们在本单元研究的都是整除现象,因此,可以说整除概念是贯穿这部分教材的一条主线。但“整除”这一词汇是否必须出现呢?让学生大量叙述“能被整除”“能整除”是否必要?签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。
2. 在以往的教材中,由于求最大公因数、最小公倍数时,采用的方法是唯一的、固定的,也就是用短除法分解质因数的方法。因此,作为求最大公因数、最小公倍数的必要基础,“分解质因数”一直作为必学内容编排。而在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用,同时,也是为了减少这一单元的理论概念,教材不再把它作为正式教学内容,而是作为一个补充知识,安排在“你知道吗?”中进行介绍。
3. 公因数、最大公因数和公倍数、最小公倍数概念的建立是以因数、倍数的概念为基础的,也是为后面学习约分(需要尽快找出分子、分母的公因数)、通分(需要尽快找出两个分数分母的公倍数)做准备的,在整个知识链中起着承上启下的作用。这两个内容可以集中编排在本单元,也可以分散编排在约分、通分的前面。考虑到本单元概念较多,抽象程度高,本套教材把这两部分内容分散编排在第四单元,也更加突出了它们的应用性。
(三)教学建议
1. 由于这部分内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在过去的教学中,一些教师往往忽视概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度。再加上有些教师在考核时使用一些偏题、难题,导致学生在学习这部分知识时觉得枯燥乏味,体会不到初等数论的抽象性、严密性和逻辑性,感受不到数学的魅力。为了克服以上教学中出现的问题,应注意以下两点。
(1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的公因数、公倍数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
2. 这部分内容可以用6课时进行教学。
第二单元《因数与倍数》 篇5
教学内容:新人教版小学数学五年级下册第13~16页。
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。
教学难点:自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。
教学具准备:学号牌数字卡片(也可让学生按要求自己准备)。
教法学法:谈话法、比较法、归纳法。
快乐学习、大胆言问、不怕出错!
课前安排学号:1~40号
课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。
教学过程:
一、复习
问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)
谁能说说10的因数,你是怎么想的?
今天,我和大家一道来继续共同探讨“因数与倍数”
二、合作交流、共探新知
b、探究找一个数的因数的方法(谈话法、比较法、归纳法)
1、谁来说说18的因数有哪些?
a、让学生举手回答,随意点名回答。回答完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?
b、学生再次依照1*18,2*9,3*6的顺序一个个讲出乘法算式。接着追问:那18的因数就有???从1开始做手势:(1,18,2,9,3,6)有没有遗漏的呢?
学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?
d、介绍写一个数因数的方法
可以用一串数字表示;也可以用集合圈的方法表示。
说一说:
18的因数共有几个?
它最小的因数是几?
最大的因数是几?
2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?
c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
学生总结:
板书:
一个数最小的因数是1;
最大的因数是它本身;
因数的个数是有限的。
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)
b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。
发现:这样子写下去,写得完吗?写不完,我们可以用一个什么号来表示?这个省略号就表示像这样子的数还有多少个?
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)
学生总结:
板书:
一个数最小的倍数是它本身;
没有最大的倍数;
倍数的个数是无限的。
(哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)
c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。
指着板书中的18的因数与2的倍数提问:
你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)
学生完成后表扬:哇,好厉害!
三、深化练习,巩固新知
1、做练习二的第3题
在题中出示的数字里分别找出8的倍数和9的倍数
注意“公倍数”概念的初步渗透。
3、做练习二的第6题
四、通过这堂课的学习,你有什么收获?
五、布置作业:
六、结束全课:
请学号是2的倍数的同学起立,你们先离场,
不是2的倍数的同学后离场。
七、板书设计:
18=118
18=29
18=36
第二单元《因数与倍数》 篇6
一、说教材
在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
教学目标定为以下几点:
(一)知识、技能目标:
1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1到100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
(二)情感、价值目标:
让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
本课的教学重点是理解倍数和因数的含义与方法。
教学难点是掌握找一个数的倍数和因数的方法。
二、学生学习情况分析
本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
三、教法与学法指导
当今社会、人类的发展离不开素质教育,而实施素质教育必须“以学生为本”,课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。
1、本节课理论性的知识比较多,课前让学生结合学案进行自学教师适当点拨。
2、 遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的操作入手,由浅入深,利用学生对乘法运算的已有认识,在操作中引出倍数和因数的概念。
3、小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
4、在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。
四、教学过程:
(一)激发兴趣,引入新课:让学生针对12个正方形的摆法讨论,激发学生兴趣,引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。
(二)情境体验,理解概念:分三个层次进行教学。(1)情境体验,初步感知倍数和因数的意义。让学生根据12个正方形的不同摆放方式写出算式,让学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。(2)在具体的乘法算式中,理解倍数和因意义。这样做不仅降低了难度,而且为学生的后续学习拓展了空间。根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,36是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。
明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。
(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)
接下来结合板书算式,考考大家谁是谁的倍数,谁是谁的因数?
若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”
学生自由发言,统一认识。
小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。
第三个环节是探索方法,发现特征:分两个层次进行,首先找一个数的因数,为了考查学生的动手有的可能是用乘法想(乘积是20的两个数是20的因数)有的可能是用除法想(除数和商都是20的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。并通过找三个数的所有因数,而找出引述的特征,从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。
(“从学生的角度看问题是教学取得实效的关键”。本环节对学生可能出现的情况做了充分的预设,并通过两次针对性的比较,使学生学会灵活地、有序地思考,及时引导学生用自己的语言总结找一个数因数的方法。然后通过尝试做题巩固方法。)
接下来找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,并在找因数特征的基础找到倍数的特征。
五、课后反思
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我应该结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。但由于时间紧,我只口头说了一下这样学生找出所有的因数可能会慢些。如果能书写下来,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的,今后这方面要多注意。
第二单元《因数与倍数》 篇7
教材分析
一、教学内容
本单元包含的内容有:1、因数和倍数2、 2、5、3的倍数的特征3、质数和合数
二、教学目标
(1)使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
(2)探索并掌握2、5、3的倍数的特征。
(3)逐步培养学生的数学抽象能力。
三、教学重点:掌握概念之间的联系和区别。
四、教学难点:掌握倍数的特征。
五、新旧教材的对比
1.精简概念,减轻学生记忆负担。
(1)不再出现“整除”“约数”概念,直接从乘法算式引出因数和倍数的概念。
(2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
(3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
六、教材建议与畅想
本单元建议6课时左右
因数和倍数
因数和倍数,传统教材是按数学知识的逻辑系统(除法整除约数和倍数)来安排的,这种概念的揭示,从抽象到抽象,没有学生亲身经历的过程,也无须学生借助原有经验的自主建构,学生获得的概念是刻板、冰冷的。现在的具体做法:
(1)用12个同样的小正方形摆一个长方形,可以怎样摆?能不能举一道简单的乘法算式,把你心目中的摆法表示出来
(2)通过刚才的学习,我们发现,用12个同样的小正方形,可以摆出三种不同的长方形,由此我们还得出三道不一样的乘法算式。以43=12为例,43=12,从数学的角度看,我们可以说4是12的因数,3也是12的因数。反过来,我们还可以说,12是4的倍数,12也是3的倍数。根据“44=16、400÷16=25”这两个算式,你能分别说一说谁是谁的因数,谁是谁的倍数吗?(此题的设计帮助学生明确了3个概念:①当两个因数相同时,通常只需要说出或写出一个。②能够根据算式灵活的说出因数与倍数的关系。③因数和倍数它们是一种相互依存的关系)
2、“因数和倍数”的概念学生非常容易与乘法算式中的因数及除法算式中的倍发生混淆,因此在教学中要充分估计学生出错的现象,用大量的判断题帮助学生形成正确的概念。
(1)乘法算式各部分名称中的“因数”和本单元中的“因数”的联系和区别。(2)“倍数”与前面学过的“倍”的联系与区别。(3)说明本单元的研究范围,根据因数和倍数的定义,0是任何非零自然数的倍数,任何非零自然数都是0的因数。但是考虑到以后研究最大公因数和最小公倍数时,如果不排除0,很多问题无从讨论,如讨论0和5的最大公因数既没有实际意义,也没有数学意义,再如,如果把0考虑在内,任意两个自然数的最小公倍数就是0,这样的研究没有任何价值。因此,教材指出本单元研究的内容一般不包括0。
以上3点教师要做到心中有数,不需要告知学生,用习题进行辨析,只需要告诉学生为了研究的方便,在研究因数和倍数时,我们所说的数专指不是零的自然数。
2、3、5的倍数的特征
1、在教学2、5的倍数的特征时让学生经历观察――猜想――验证的过程,由于2、5的倍数的特征在个位数上就体现出来了,很容易发现,所以可以放手让学生归纳,教师重点指导学深观察既是2的倍数又是5的倍数的特征。
2、在运用2的倍数的特征进行自然数分类介绍偶数和奇数的概念时。我们在这个单元中一般不考虑0,在这儿需要作一个特殊说明,因为0也是2的倍数,因此0也是偶数。
3、在教学3的倍数的特征时让学生经历观察――猜想――推翻猜想――再观察――再猜想――验证的过程。
质数和合数
1、在质数和合数的含义教学中。注意加强因数和质数、合数的概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背,从因数和倍数的含义去理解其他的相关概念。
2、从一张100以内的数列表中,寻找质数的过程,这一环节要用去了课堂中较多的时间。必须使每一个孩子都体验寻找质数的过程。有的会一个个去寻找质数;有的在寻找了几个后发现了规律,用排除合数的方法迅速寻找,当然也有一些孩子一开始也有无从下手。当学生探索完后,教师要向他们介绍了古代数学家的“筛法”,可以先筛出除2以外的2的倍数,再筛出除3以外的3的倍数,想一想一只要筛到几?是的学生深刻理解100以内的质数表。
3、教材把分解质因数安排在“你知道吗?”中进行介绍,供学生阅读参考。但教师在教学是还是要作为知识点讲授,因为是今后学习其它知识的一种重要方法技能。按照图表的形式把合数分解成质数相乘的形式转化为短除法,重点讲短除法的方法。然后介绍分解质因数的作用,例如:找一个较大数的因数,使学生明确分解质因数的作用。并告知学生这一方法将在以后的学习中广泛运用,为学生留有悬念。
第二单元《因数与倍数》 篇8
一、“认真细致”填一填:(40分)
1、因为15÷5=3,所以5是( )的因数,15是5的( )。
2、在10以内的自然数中,奇数有( ),偶数有( )。
质数有( ),合数有( )。
3、20的因数有( ),其中是质数的有( )。
4、既是奇数又是合数的最小数是( ),既是偶数又是质数的数是( )。
5、要使52 含有因数3, 里最小可填( );要使它是2的倍数, 里最大可填( )。
6、既是2的倍数,又是3的倍数的最大两位数是( );既是2的倍数,又是5的倍数
的最小三位数是( );既是2、5的倍数,又有因数3的最小三位数是( )。
7、一个数既是12的倍数,又是12的因数,这个数是( )。
8、既是54的因数,又是6的倍数,这样的数有( )。
9、三个连续偶数的和是42,这三个偶数分别是( )、( )和( )。
10、两个质数和为18,积是65,这两个质数是( )和( )。
二、“对号入座”选一选:(选择正确答案的序号填在括号里)(40分)
1、最小的质数是( )。
【① 1 ② 2 ③ 3 】
2、一个合数至少有( )个因数
【① 1 ② 2 ③ 3 】
3、37是( )。
【① 因数 ② 质数 ③ 合数 】
4、下面说法错误的是( )。
【① 一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
② 正方形边长是质数,它的面积一定是合数。
③ 个位上是3、6、9的数都是3的倍数。】
5、下面说法正确的是( )。
【① 两个奇数的和一定是2的倍数。
② 所有的奇数都是质数,所有的偶数都是合数。
③ 一个数的因数一定比这个数的倍数小。 】
6、最大两位数的因数有( )个
【① 2 ② 3 ③ 4 】
7、下面是奇数又同时是3、5的倍数的数是( )。
【① 95 ② 90 ③ 75 】
8、20 = 4 5,4和5是20的( )。
【① 因数 ② 合数 ③ 质数 】
9、用0、3、4、5组成的所有四位数都是( )的倍数。
【① 2 ② 3 ③ 5 】
10、已知a、b、c是三个不同的非零自然数,且a = b c ,那么下面说法错误的是( )。
【① a一定是b的倍数。② a一定是合数。③ a一定是偶数。 】
三、走进生活,解决问题。(20分)
第二单元《因数与倍数》 篇9
课题名称 因数与倍数 教学时间 两课时(80分钟) 学习者分析 学生学习这一内容之前已经理解掌握整数乘法,并知道乘法算式中的因数和倍数;学生对因数和倍数在字面上有一定的理解。 虽然有些理解,但也有一定的难度,不过能在老师的指导下尝试完成教学问题。又由于学生个体差异较大,理解层次差异大,解决问题的能力、应用数学的能力还有待提高训练。 教学目标 一、情感态度与价值观 1. 体验所学知识和现实生活的密切联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。 2、培养学生的抽象、概括的能力,渗透事物之间相互联系、相互依存的唯物辨证主义的观念。 二、过程与方法 1. 培养学生的合作意识、探索意识,以及热爱数学学习的情感; 2. 加强学生通过练习去培养发现问题的习惯,然后去寻求方法解决问题。 三、知识与技能 1. 从操作活动中理解因数与倍数的意义,会判断一个数是不是另一个数的因数或倍数; 2. 能与大家交流自己解决问题的能力,培养口述能力。 教学重点、难点 1. 理解因数与倍数的意义。 教学资源 《p12-13页的教学内容》教学过程描述 教学活动1[a1] 一、激发兴趣,引入新课。 1、教师: 我们已经认识了哪几种数?(并举例说一说) 学生:自然数……,小数……,分数……。 2、引入新课。 刚才, 同学们的回答非常正确,举例也很漂亮!!!(教师掌声鼓励……) 今天,我们再来研究自然数中数与数之间的关系。 ——板书:因数与倍数 教学活动2[a2] 二、带着问题,探索新的学习任务。 1、让学生观察课本上的主题图。并写出不同情况的乘法算式和除法算式。 根据学生的汇报教师板书如下: 112=12 26=12 34=12 121=12 62=12 43=12 12÷1=12 12÷2=6 12÷3=4 12÷12=1 12÷6=2 12÷4=3 2、教师:在这3组乘除法算式中都有什么共同点? 3、学生汇报交流结果,观察发现。 教学活动3[a3] 三、研究因数与倍数的意义。 1、教师:像黑板上这样的乘除法式子中的三个数之间的关系还有一种说法,你们想知道吗? 请看课本第12页。 教师:2和6与12的关系还可以怎样说呢? (2和6是12的因数,还可以说12是2的倍数,也是6的倍数) 2、教师:2、6和12的关系是因数与倍数的关系,在这几组算式中,谁和谁还有因数和倍数的关系? 学生一:3、4和12有因数和倍数的关系,3和4是12的因数,12是3和4的倍数; 学生二: 1和12也有因数和倍数的关系,1是12的因数,12是1的倍数; 学生三…… 教师提问:能不能说12是12的因数呢? (学生:能。因为121=12,1和12都是12的因数。) 3、小结: 经过这三组算式的学习,我们知道1,2,3,4,6,12都是12的因数,同时,12是1,2,3,4,6,12的倍数。 四、教学讨论:23÷4=5……3 1、提问:23是4的倍数吗?为什么? (不是,因为23除以4有余数) 2、组织学生举例谁是谁的倍数、谁是谁的因数,然后集体讲评订正。 五、教学讨论:03 010 0÷3 0÷10 1、教师提问:有什么发现? (学生:发现0和任何数相乘都等于0,0除以任何数都等于0.) 2、教师强调!!! (1)、为了方便,在研究因数与倍数时,我们所说的数一般指的是不包括0的整数;(2)、这节课我们学的因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称的“因数”,切记两者可不能搞混。 六、巩固训练。 1、下面每一组数中,谁是谁的倍数,谁是谁的因数。 16和2 4和28 55和11 72和9 2、下面的说法对吗?为什么? (1)、48是6的倍数。 (2)、在58÷9=6……4中,58是9的倍数。 (3)、因为38=24,所以24是倍数,3和8是因数。 形式: 学生回答——学生讲评——教师讲评。 3、在36、4、9、12、3、0这些数中,谁和谁有因数和倍数的关系? 学生…… 教学活动4[a4] 七、作业布置。 《家庭作业》全做。 八、课堂小结。 通过今天这节课的学习,大家有什么收获? (在学生谈收获的时候,教师不仅要让学生谈知识上的收获——学会了用什么方法去探究新知识,还要让学生谈出学习方法上的收获——新旧知识互补法、例举事例突破法……。) 九、教学反思。 经过这两节的师生合作学习,我发现达到了预期效果: 1、理解乘法算式中的因数和倍数与自然数中的因数和倍数的区别;2、理解自然数中的因数和倍数是表示数与数之间的关系;3、理解一个数的因数倍数具有多个性。 所存在的差距:理性地理解乘法算式中的因数和倍数与自然数中的因数和倍数的区别;知道自然数中的因数和倍数是表示数与数之间的关系;从飞机不同排列对因数和倍数的感性认识,到因数倍数多个性的理性理解。 教学中的确定问题:如何理解乘法算式中的因数和倍数与自然数中的因数和倍数的区别,从而理解自然数中的因数和倍数的概念;如何理解一个数因数倍数的多个性从感性认识到理性认识的转变。这两各问题还需加强教学。
[a1]利用学生对学习旧知识的记忆点拨,让学生理解新的学习内容。 同时减轻学生学习新知识的压力。[a2]让学生独立计算,并感知大意。养成自主分析、寻找技巧去解决问题、交流成果的习惯。[a3]通过教师反复指导点拨,小组交流讨论,体会新 的学习内容,自己学会解决问题。从而体会到因数与倍数的意义。[a4]通过这个课后小结,以加深学生对新课的理解程度,同时对还没有学会的 要去弄懂。
第二单元《因数与倍数》 篇10
一、认识倍数和因数
(1)师:一起看大屏幕,数一数,几个正方形?(12,12就是一个自然数)你能把12个正方形摆成一个长方形吗?你有几种摆法呢?你能用乘法算式把你心中的摆法表示出来吗?
(2)学生写算式后汇报
师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?
师:还有其它摆法吗? 还有不同的乘法算式吗?猜一猜,他是怎样摆的?
学生交流几种不同的摆法。随着学生交流一一演示。
师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:34=12, 3和4在乘法算式叫(因数),那12呢?(积)因为: 34=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题) (齐说3、4、12)
(3)师:这儿还有两道乘法算式,选你喜欢的一个,说一说谁是谁的因数?谁是谁的倍数?
师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?
(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。
小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”
(5)举例内化
1、同桌出题互说。
师:你能写一道乘法算式,让同桌说说( )是( )的倍数,( )是( )的因数吗?生汇报。
2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:( )是( )的倍数,( )是( )的因数。
小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。
师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。
(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。
二、创设情境,自主探究找因数和倍数的方法.
(一)探索找因数的方法
1、(屏幕显示):试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁的倍数吗?先自己试一试。 3、5、18、20、36
生说略。还有补充的吗?能不能说3是20的因数?
师:师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才沈老师好像听到有好几个都是36的因数,你们发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?(3、18……)还有谁?36
师:3、18、36都是36的因数,只有这3个吗?(1、2、……)
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。
生写后小组内交流。学生填写时师巡视搜集作业。
2、交流作业。(略)
出示学生的不同作业。交流找因数的方法。
师:出示36的因数有:1、36;2、18;3、12;4,9; 6
你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。
师:找到什么时候为止? 那为什么算到6,你们就不往后找了呢?相同的只写一个6。
师:他是用乘法找的,其他同学还有补充吗?
生:可以用除法找。用36除以1得36,36和1就是36的因数。再用36除以2……
师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)
师:我也是跟你们一样很有顺序,从1开始找的。我们一起来写出36的因数,好吗?根据算式,一对对找,找到了1就找到了36,找到了2就找到了18,依此类推,按从小到大的顺序排列。(板书:36的因数有:1、2、3、4、6、9、18、36。) 写的时候可以一头一尾地写。这样也可以做到答案的有序性。
师:36的因数还可以这样表示。(小黑板:板书集合圈图)
4、启迪思考。
师:现在你找一个数的因数有办法了吗? 怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。
3、学生小结。好,我们已经说了那么多,谁能完整地说一说?
4、尝试练习:
师:36的所有因数已经找到,那你能运用刚才的方法找一找20,18,5的因数吗?试着在圈中填一填。20的因数 18的因数 5的因数
5、发现一个数因数的特征
师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。
(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)
师(小结):一个非零自然数的最小因数是1,最大因数是它本身,因数的个数是有限的。
四、巩固练习。
师:刚才同学们认识了因数与倍数,并且掌握了求一个数因数和倍数的方法,想不想检测一下自己掌握的如何?
1、判一判。(小黑板出示)
2、填一填。
第二单元《因数与倍数》 篇11
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?
学生回答。
师:哦,老师知道了。是好朋友。如果他这样介绍:是好朋友。能行吗?
生:不行,这样就不知道谁是谁的好朋友了。
师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。
二、探索交流,解决问题
1、师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。
根据学生的汇报板书:
112=12 26=12 34=12
121=12 62=12 43=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,121=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,
我们知道1,2,3,4,6,12都是12的因数。
师出示:
1、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。
12 5=60 45 ÷ 3=15
11 4=44 9 8= 72
2、8是倍数,4是因数。…………… ( )
强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。
因数和倍数不能单独存在。
师出示:03 010
0÷3 0÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在26=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在26=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
2、
第二单元《因数与倍数》 篇12
我在执教这节“整理和复习课”之前,每一单元的复习课,我总是感觉自己信心十足,但学生精神不振。尽管在复习时关注了学生平时的学习状况,由于复习内容相对集中,练习形式比较单一,学生对之不是非常感兴趣,复习效果就可想而知。在认真备课的基础上,我想这单元的复习先放手让学生进行整理,每个同学利用双休日时间出一张数学小报,把平时学习中有问题的知识点先搜集起来,上课时再来解决。于是稍作指导后,便把这一任务布置给了学生。
星期一,我早早来学校,先把学生的作业收起来批改。不看不知道,一看真是吓了一跳。班里五十三个孩子,一份份图文并茂的手抄报呈现在我眼前。一起来倾听孩子们的心声:
王莫的小报上,“回顾与整理”占了整整半个版面,看得出,这是一位细心的女孩子,她一定化了不少心思,才把这单元的概念一一罗列出来,比我备课还详细。
张一瑞这样写着:“开始上因数和倍数时,同学们都说很简单,经过几天的学习,我才感觉并不简单,特别是找某个数的因数是,我常常找漏。尤其是稍大的数,稍不认真,就会漏掉,我的作业本上经常有找错因数与倍数的现象,我希望在这些方面老师再指导一下。
刘泽宇的小报有创意,大概男孩子平时都喜欢看一些战争类的图书,他在编小报时,分成了二部分。整理知识部分分成了:概念境界--安排有列表写出概念,练习境界安排了“实际战斗”、“崭妖除魔”、“击破沙袋“、”巧遇迷阵“等。字里行间,看得出这孩子挺喜欢数学,这一单元学得不错。
沈芯羽的小报更增添了一些人文性的气息。她开头这样写着:小朋友们,你学了很长时间的因数与倍数了,接下来,我要考你概念,准备好了吗?接着说:概念考过了,我们开始练习吧。于是,她设计了填空,找朋友,解决问题等内容,复习得有条有理。
杜钰婧的小报:清楚地显示了本单元的一些主要概念:因数与倍数,质数与合数,奇数与偶数的区分,在解决问题运用部分,他设计的练习题相对集中,比较典型,都是平时容易错的习题。
余小晶的小报设计独特,尤其是边框的设计,已经融进了小数知识,每一朵花之间的间隔都一样长,内容安排错落有致,看上去,显得美观大方。
……看了孩子们的复习计划,我心里有了底。教学时,我采用了这样的教学程序:
第一部分:小报交流。说说你认为本单元中难理解,掌握得不太好的知识点分别是什么?你准备采用什么方法进行复习。
第二部分:练习与运用。事先将学生手抄报上呈现的典型练习题抄写在卡片上,一起观察,说说这类习题解答时要注意什么。如:。奇数、偶数、质数合数的概念。学生都说最容易搞错。于是,我把这样一个分类写在黑板上:
在17、22、29、7、37、87、93、96、41、58、61、14、57、19中
奇数 偶数 质数 合数
先让学生观察题,再让他们分成四大类。每一类这么分。选择一个习题跟同桌说说“我是这样想的”。等同桌交流后,我再指名几个学生说说。要求学生思考:哪几题要特别注意。学生明白了:有的数字可能既是奇数又是合数,有的可能既是质数又是偶数。。。。。。我这个数学老师自然就退居 “二线”。
第三部分:走进作业“超市”。通过这节课的复习,学生自己设计一份作业练习,针对自己平时掌握得不太好的知识点再次进行复习。你看:一位同学设计的作业还比较有层次。直接写出答数:
a组 :
1、在50以内的自然数中,最大的质数是( ),最小的合数是( )。
2、既是质数又是奇数的最小的一位数是( )。
3、在20以内的质数有( )
4、如果有两个质数的和等于21,这两个数可能是( )和( )
5、一个数的最小倍数减去它的最大因数,差是( )。
b组:
1、15的最大因数是( ),最小倍数是( )。
①1 ②3 ③5 ④15
2、在14=27中,2和7都是14的( )。
①质数 ②因数 ③质因数
3、一个数,它既是12的倍数,又是12的因数,这个数是( )。
①6 ②12 ③24 ④144
4、.一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有( )。
①120个 ②90个 ③60个 ④30个
c组:
1、有三个质数,它们的乘积是1001,这三个质数各是多少?
2、一个小于30的自然数,既是8的倍数,又是12的倍数,这个数是多少?
3、当a分别是1、2、3、4、5时,4a+1是质数,还是合数?
批改着学生设计的一份份富有个性的作业,我感到这个单元的复习课挺有新意,效果也比较好。于是,引起了我的几点思考。
1、单元复习课怎么上?
翻开五年级新教材,每一单元的“整理与复习课”思路都很清晰。象因数与倍数这一单元,教材也是按照了“回顾与整理”、“练习与应用”、“探索与实践” 、“评价与反思”四大部分。联系前面几个单元的整理与复习,我都是从教材出发,先与学生进行知识的梳理,然后进行针对性的练习。如果我一直用那样的方法来上,自己感觉形式比较单一。尤其我感到复习课上知识掌握好的同学没有兴趣,觉得老师在炒冷饭,平时知识掌握有缺漏的同学,复习课上也不是十分投入,总觉得老师要上复习课,自己未必有内心需求。于是,我在台上“津津有味”地讲着,学生索然无味地听着,我要强调这个知识点,强调那个计算法则,学生仍“我行我素”,课堂作业上照样错,我照样生气。于是,作为老师的我们开始抱怨,学生在题海中“流连忘返”,一个一个单元就这样过去,老师开始自我安慰:“任务完成就好”。
所以,我一直思考,复习课究竟怎么上?以什么形式上好一些?今天我大胆进行了尝试,上面的复习形式,既节约了时间,效果似乎要好一些。
2、问题缘自哪里?
特级教师华应龙老师在其讲座《课堂应差错而精彩》中说到:要正确利用学生的错误资源。我想:基于这样的思考,课前让学生把自己认为最混淆的概念,掌握得不太好的内容先整理出来。上课前,我可以进行筛选重点复习什么内容。同学们什么最容易做错,解决问题做得不是很好,我就多化点时间进行复习。今天课堂上的问题均有学生提供,这样就引起了学生的学习兴趣,让枯燥的复习内容变得生动些。
3、注意在复习中反思
上好复习课,我认为有两点不能忽视:复习课前,教师要加强自我反思,这一单元的教学重点、难点是什么,平时课堂上学生的表现怎样,作业情况中问题最大的是什么?而学生呢,学完一个单元后,也要进行反思。所以,在手抄报的背后,我读懂了学生对学习的反思,这种反思其实就是一种重要的学习资源,也是我的教学资源,这也为学生搭建了一个进步的台阶。它提醒我以后在上复习课前,应该调整自己的教学状态,应该注意复习内容的安排,创新复习形式,多多反思,让复习课真正起到“温故而知新”的作用。
- 推荐阅读:
- 第二单元《因数与倍数》(精选13篇)
- 第二单元 因数与倍数(精选4篇)
- 第二单元因数与倍数(新人教五下)
- 第二单元 因数与倍数(新人教五下)
- 第二单元《因数与倍数》
- 《因数与倍数》教学设计方案(精选13篇)
- 因数与倍数教案
- 倍数教案
- 因数与倍数的教学设计
下一篇:离职感言 离职感言讲话稿
相关文章
-
无相关信息