您现在的位置是:首页 > 心得体会
分数应用题 分数应用题100道含答案
分数应用题 篇1
教学目的
1.通过复习,使学生能够掌握的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习.(板书:的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然与百在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )
4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,
(1)女队员比男队员多 ,女队员有多少名?
(2)男队员比女队员多 ,体操队员共有多少名?
(3)女队员比男队员少 ,女队员有多少名?
(4)男队员比女队员少 ,体操队员共有多少名?
六、板书设计
分数应用题 篇2
教学目的
1.通过复习,使学生能够掌握的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习.(板书:的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然与百在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )
4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,
(1)女队员比男队员多 ,女队员有多少名?
(2)男队员比女队员多 ,体操队员共有多少名?
(3)女队员比男队员少 ,女队员有多少名?
(4)男队员比女队员少 ,体操队员共有多少名?
六、板书设计
分数应用题 篇3
教学内容:人教版六年制教材第十一册P83例4。教学目标:1、掌握解题思路。 2、会正确解答稍复杂的分数应用题。 3、培养探索精神与分析解决问题的能力。教学重点:稍复杂的分数应用题的解题思路。教学难点:寻找新旧知识之间的联系。教学准备:教学软件(逐步演示的线段图及学生提供的知识)、贴纸(出示例4)、 投影片(提供练习题)、纸条(收集不同算法)教学过程:一、谈话引入师:同学们,上新课前老师先提一个问题,大家先思考,然后抢答。如果要你们查找广州市市长热线电话,有什么办法呢?师:(汇报完)同学们想到了查114,找报纸等不少的办法,不管什么方法,我们都是通过联系一些能找到市长热线电话的有关资料去查找,同样,解决数学问题也要联系我们学过的有关知识。二、教学例41、引出例4。下面同学们就利用这种解决问题要联系有关知识的方法,来解决今天学习的分数应用题(贴纸出示例4,后板书课题)例4:出示一个发电厂原有煤2500吨,用去3/5,还剩多少吨?2、出示目标。解答应用题时,我们通常是怎样做的?(1理解题意;2联系学过的知识去分析数量关系;3会解答。板书目标:会分析、会解答)3、理解题意。 那么下面大家就先默读题目,看一下你是怎样理解这道题的题意的,用自己的语言组织一下。(独立进行理解题意)汇报。(提问几个学生,教师边根据学生的回答边逐步计算机出示线段图)若学生不会答可补充问用去3/5表示什么意思?(表示用去的是原有的3/5)说明什么?(把把原有的2500吨看作单位“1”) 2500吨 还剩?吨 用去3/54、查找资源。 刚才大家都能比较准确地理解题意,那么看到题目的条件与问题,你想到什么知识对我们解决这个问题有帮助?(独立思考→小组交流、师参与引导→汇报→教师根据汇报计算机出示有关知识)1)求一个数的几分之几是多少用乘法计算。2)总量-用去量=还剩量 3)用去3/5→用去?吨4)用去3/5→还剩2/55、主动探索,尝试解决。(1)经过一段时间的学习,同学们现在都学会了准确去寻找解决问题的有关知识,根据这些知识你们能解答例题了吗?如果能的就直接解答;不能的再重温这些有关知识,然后尝试解答,(如果确实有困难的可以和老师交流一下怎样解,做完的想一想还能有其他方法吗?有的就写出来)(2)小组内互相说自己怎样想?怎样算?(组长组织,已经完成的先说,没做完的先听其他人说。交流过程中指名不同的同学出来板算两种不同的方法)6、归纳思路,提炼方法。(1)汇报:(指着算法)要求还剩多少吨,就要用原有的吨数减去用去的吨数,因为用去的吨数题目中没有直接告诉我们,所以要先用原有的2500吨乘以用去3/5求出用去的吨数,再求还剩的吨数;要求还剩多少吨,就是求2500吨的2/5是多少,因为题目没有直接告诉我们还剩2/5,所以要先用1-3/5求出还剩几分之几,再求还剩多少吨。(先由板算的同学说,再看其他同学有什么补充或象他们那样根据自己的算法说说自己是怎样想的。边汇报边计算机闪动线段图,如下图) 订正:你们认为他们算得怎样? 2500吨 (用去?吨) 还剩?吨 用去3/5 (还剩几分之几) 解法一:2500-2500×3/5 解法二:2500×(1-3/5) =2500-1500 =2500×2/5 =1000(吨) =1000(吨)(2)还有其他不同的算法吗?(对可能的错误如2500×3/5要指出其错误的原因。对如这样的解法χ+2500×3/5=2500要加以肯定,但说明体现不了解题的优越性)7、小结。(1(指着两种解法)比较一下:两种解法有什么区别?有什么联系?先别急,下面先由同学们带着问题看书P83例4,把例4补充完整后,先想一想,用自己的语言归纳出来。(稍后)下面大家把自己的想法在组内交流一下。汇报。 区别:两种方法解题思路不同,第一种主要用总量减去用去量得到还剩量,第二种用总量乘以还剩的占总量的几分之几得到还剩量。 联系:都把原有的吨数看作单位“1”,都要用到求一个数的几分之几是多少用乘法计算。(边听边观察计算机)(2)回忆一下,我们刚才是怎样解答例4的?(理解题意,联想学过的知识帮助解决问题)师:所以以后遇到新的问题,我们要充分理解题意,然后联系有关知识去帮助解决。三、练习巩固,适当扩展。 下面我们就用这种解决问题的方法来做一些练习。1、P84:做一做1。(先说说自己是怎样想的,汇报。再用两种方法只列式不计算。订正:做的怎样?有什么评价?)2、一条公路全长240米,修路队第一天修了全长的1/4,还剩多少米没有修完?(先自己想一想,再用两种方法列式解答,全班订正) 师:我们说解决问题要联系学过的有关知识,那么刚才两道练习你用到了什么知识呢?(例4的知识)问题解决了,新的问题又来了,(出示第3(1)题练习)遇到新问题又怎么办呢?联系什么知识?下面就交给你们自己去想一想、做一做,只列式不计算。3、一条公路全长240米,修路队第一天修了全长的1/4,第二天修了全长的1/3。 (1)还剩多少米没有修完?(2)两天一共修了多少米?(3)第二天比第一天多修了多少米? (用纸条收集不同的算法对答案并重点汇报240×(1―1/4―1/3)怎样想。第二、三问独立完成,小组评价,全班订正)四、教学评价。这节课学习了什么?(分数应用题)有什么收获?(解决问题要联系学过的有关知识或方法)所以当我们日常生活中遇到问题时,要善于查找有关知识或方法来解决。 五、布置作业。1、机动练习或作业。已经知道朝天小学六年级学生人数占全校学生总数的4/25,问1—5年级一共有多少人?(请大家想办法解决)(时间允许让学生汇报想到的一些办法)P86:9。(至少用一种方法,有多种写多种,其中一种列式计算,其余的只列式不计算)
分数应用题 篇4
教学内容:教科书第117—118页,例4和“做一做”,练习二十五的第1—4题;
教学目的:整理和复习与o;一个数比另一个数多(或少)几分之几”有关的,使学生进一步理解这些稍复杂的之间的内在联系.掌握它们的解答方法。
教具准备:教师准备两块小黑板,一块写好口算练习题,另一块写好教科书第117页例4及下面讨论的问题。
教学过程:
一、口算练习
教师出示小黑板上的口算练习题.让学生直接在练习本上写得数,然后集体订正。
二、教学例4
1.复习“求一个数比另一个数多(或少)几分之几”的应用题。
教师:“下面我们来复习。”(出示小黑板上的例4。)
例4学校举办的美术展览中,有50幅水彩画,80幅蜡笔画。蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?
教师:“请同学们先自己解答这道应用题。解答完以后。想一想这道题中的两个问题有什么相同之处,有什么不同之处?”学生独立在练习本上解答。同时请一名学生在黑板上解答。
(80 - 50)÷50 = (80 - 50)÷80 =
答:蜡笔画比水彩画多 :水彩画比蜡笔画少 。
解答完以后,教师让学生说明这道题中两个问题的相同点和不同点。
学生:“这两个问题的相同点是:都是求水彩画与蜡笔画之间的关系。不同点是:一个是以水彩画的数量(50)作标准,看水彩画与蜡笔画数量的差是水彩画数量的几分之几;另一个是以蜡笔画的数量(80)作标准,看水彩画与蜡笔画数量的差是蜡笔画数量的几分之几。
教师:“对!所以我们在解答时.一定要认真分析数量关系。要弄清以哪个数量作为标准,也就是说。要弄清以哪个数量作为单位“ 1。”
2,复习“已知一个数比另一个数多(或少)几分之几和其中的一个数,求另一个数”的应用题。
教师:“接着例4的这两个问题.我们再来讨论下面的两个问题。”(出示小黑板上其余的问题。)
(1)根据“蜡笔画比水彩画多 ”这个条件:
如果已知水彩画有50幅.怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅.怎样求水彩画有多少幅?
(2)根据“水彩画比蜡笔画少 ”这个条件:
如果已知水彩画有50幅。怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅.怎样求水彩画有多少幅?
教师:。请同学们在练习本上解答这几个问题。解答的时候,要认真想一想每道题中应该以哪个数量作为单位1:”
学生解答完后。指名叫几个学生说一说自己是怎么分析数量关系和怎样解答的。分析的时候.教师要引导学生弄清什么时候用乘法计算,什么时候列方程解答或用除法计算。一般可以概括成:当我们知道了作为单位l的数量,要求它的几分之几时,就用乘法计算(根据乘法的意义1)反之,如果是求作为单位“1”的数量时,列方程解答,或者是用除法计算(根据除法的意义)就比较方便。
3.复习百。
教师:“如果我们把以上各题中的分数都改为百分数,解答的方法一样吗?”(一样)
指名学生口头改编题目,并解答。(例如。把例4的问题改为求“蜡笔画比水彩画多百分之几?水彩画比蜡笔画少百分之几?”解答的结果是百分数。)
教师:“百与实质是一样的.只不过是把比较两个数量关系的分数用百分数来表示。”
三、课堂练习
1.做教科书第117页“做一做”的第l题。
学生独立解答,教师巡视。做完后集体订正。订正时,可以请一名学生说一说合格率与废品率的关系。以加深学生对这些实际问题的理解。
2.做教科书第117页“做一做”的第2题。
学生做完后,请几名学生说一说,在每道题中要以哪个数量作为单位“1。”是用什么方法解答的,为什么。
四、作业
练习二十五的第1—4题:
分数应用题 篇5
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米?
例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答:这批水果有480千克.
教案点评:
教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。
分数应用题 篇6
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米?
例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答:这批水果有480千克.
教案点评:
教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。
分数应用题 篇7
【教学内容】p100-101页,练习十九12—18题。【教学要求】1、通过练习进一步巩固分数应用题的解题规律,掌握分数应用题的分析方法。2、复习有关税率、利率的知识。3、复习工程问题的应用题,能正确理解工程问题中时间转化为工作效率的变化规律。【教学重点】分数应用题。【教学难点】工程问题。【教学过程】一、基本练习。1、计算。10.6-(6—+—÷12.5%)(111+999)÷[56×(—-—)]2、分析下列分率句,写出数量关系。 上旬完成了计划的—。 运来的黄瓜比西红柿少—。 鸭的只数比鸡多20%。二、练习。1、完成第13题。“1” 计划生产的总台数。— 上旬完成的台数。40% 中旬完成的台数。(—+40%)——上旬和中旬共生产的台数。(40%-—)——中旬比上旬多生产的台数。(1-—-40%)——下旬生产的台数。2、完成第14题。分析:三道小题中,运来黄瓜的重量比西红柿少—,都是把西红柿的重理看作单位“1”。西红柿的重量×—=黄瓜重量西红柿的重量×(1-—)=黄瓜重量3、完成第15题。注意两道题的区别。⑴第二次用去它的—,是一个分率。解:设桶油重x千克。x-20%x-—x=1.6⑵第二次又用去—千克,是一个量。解:设这桶油重x千克。x-20%x=—+1.64、完成第16题。 本金×利率×时间=利息5、完成第17题。分析:这是一道工程问题,把总工作总量看作“1”。甲10小时打完,甲的工作效率,即每小时完成这份稿件的—,同理可得乙的工效。6、完成第18题。分析:进水管每分钟可进水—,出水管每分钟可出水—,同时打开,每分钟可注水—-—=—。
分数应用题 篇8
教学目的
1.通过复习,使学生能够掌握的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习.(板书:的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然与百在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )
4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,
(1)女队员比男队员多 ,女队员有多少名?
(2)男队员比女队员多 ,体操队员共有多少名?
(3)女队员比男队员少 ,女队员有多少名?
(4)男队员比女队员少 ,体操队员共有多少名?
六、板书设计
分数应用题 篇9
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米?
例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答:这批水果有480千克.
教案点评:
教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。
分数应用题 篇10
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米?
例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答:这批水果有480千克.
教案点评:
教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。
分数应用题 篇11
教学目的
1.通过复习,使学生能够掌握的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习.(板书:的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然与百在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )
4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,
(1)女队员比男队员多 ,女队员有多少名?
(2)男队员比女队员多 ,体操队员共有多少名?
(3)女队员比男队员少 ,女队员有多少名?
(4)男队员比女队员少 ,体操队员共有多少名?
六、板书设计
分数应用题 篇12
【教学内容】p98页练习十九6—11。【教学要求】1、复习分数应用题的结构特征和解题规律,能正确运用单位“1”的量×分率=分率的对应量。2、能正确分析分率句,把握分数应用题的解题的关键。3、能用方程解答分数除法应用题。【教学重点】分数应用题。【教学难点】正确画图分析分率句。【教学过程】一、分析分率句。先说出下面各题里把哪个数量看作单位“1”,再把数量关系式写完整。1、苹果的重量是梨的—讲解分析方法:⑴找到分率;⑵分析分率是“谁”的几分之几,即把“谁”看作单位“1”;⑶找分率的对应量;⑷正确写分数的数量关系;⑸在此基础上进行灵活地变化。如上例:“1” 梨 — 苹果重量所以,梨的重量×—=苹果重量梨×(1+—)=梨和苹果一共的重量梨×(1-—)=梨比苹果多的重量。2、实际烧煤量比计划烧煤量节约了—。分析:节约了—是节约了谁的—?从“比”字入手“比”后面的量作标准的即为单位“1”,也就是节约了计划烧煤量的—,因此:“1” 计划烧煤量— 实际比计划节约的烧煤量。计划烧煤量×—=实际比计划节约的烧煤量计划烧煤量×(1-—)=实际烧煤量3、六年级学生出勤率是98%。分析:理解出勤率的含义,“率”通常指百分率出勤人数————— ×100%=出勤率应出勤人数“1” 应出勤人数98% 出勤人数应出勤人数×98%=出勤人数应出勤人数×(1-98%)=缺席人数注意:计算的如“含水率、出勤率、优秀率、成活率”等,一般都指部分数占总数的百分之几,因此这里的百分率应小于1(即100%)。二、练习。1、一根铁丝长60米,一根铜丝长80米,铁丝的长度是铜丝的几分之几?铜丝比铁丝长几分之几?2、⑴丰华农场种玉米120公顷,种小麦的面积是玉米的—,种小麦多少公顷?⑵丰华农场种玉米120公顷,是种小麦面积的1—倍,种小麦多少公顷?⑶先改变上面两题中的第二个已知条件,使它们分别成为一道两步计算应用题,再解答。三、作业。练习十九6—11。
分数应用题 篇13
教学目的
1.通过复习,使学生能够掌握的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习.(板书:的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然与百在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )
4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,
(1)女队员比男队员多 ,女队员有多少名?
(2)男队员比女队员多 ,体操队员共有多少名?
(3)女队员比男队员少 ,女队员有多少名?
(4)男队员比女队员少 ,体操队员共有多少名?
六、板书设计
分数应用题 篇14
教学目标
1.使学生学会用方程方法和算术方法解答两步计算的分数一般应用题.
2.培养学生分析、解答两步计算的的能力和知识迁移的能力.
3.培养学生的推理能力.
教学重点
培养学生分析、解答两步计算的的能力
教学难点
使学生正确地解答两步计算的分数一般应用题.
教学过程
一、复习引新
(一)全体学生列式解答,再说一说列式的依据.
两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?
13÷2-5
=6.5-5
=1.5(千米)
根据:路程÷相遇时间-甲速度=乙速度
(二)教师提问:谁来说一说相遇问题的三量关系?
速度和×相遇时间=总路程
总路程÷相遇时间=速度和
总路程÷速度和=相遇时间
(三)引新
刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)
二、讲授新课
(一)教学例1
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇.甲每小时行5千米,乙每小时行多少千米?
1.读题,分析数量关系.
2.学生尝试解答.
方法一:解:设乙每小时行 千米.
方法二: (千米)
3.质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?
相同:解题思路和解题方法相同;
不同:数据不同,由整数变成分数.
4.练习
甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?
(二)教学例2
例2.一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?
1.学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系.
由此得出:一批水果的重量 第一次+第二次
2.列式解答
方法一:解:设这批水果有 千克
方法二:
3.以组为单位说一说解题的思路和依据.
4.练习
六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 .六年级有学生多少人?
三、巩固练习
(一)写出下列各题的等量关系式并列出算式
1.甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?
2.打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 .这部书稿有多少页?
(二)选择适当的方法计算下面各题
1.一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?
2.甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?
四、课堂小结
今天我们学习的和以前所学的知识有什么联系?有什么区别?
五、课后作业
1.商店运来苹果4吨,比运来的橘子的2倍少 吨.运来橘子多少吨?
2.一套西装160元,其中裤子的价格是上衣的 .上衣和裤子的价格各是多少元?
六、板书设计
例1.两地相距13千米,甲乙二人从两地同时出发相向而行,经过
小时相遇.甲每小时行5千米,乙每小时行多少千米?
例2.一个水果店运一批水果,第一次运了50千克,第二次运了
70千克,两次正好运了这批水果的 ,这批水果有多少千克?
解:设乙每小时行 千米
答:,乙每小时行 千米.
解:设这批水果有 千克
答:这批水果有480千克.
教案点评:
教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。
分数应用题 篇15
课 题
(1)
课 型
新授课
要点提示
备课人
严正祥
备课时间
9月3日
教学内容:教材第三15—17页例1、例2和“练一练”、练习三第1—6题
教学目标:
1、使学生初步认识分数乘法应用题的特点,理解分数乘法应用题法应用题的解题思路和解题方法,认识分数分数乘法应用题的基本数量关系。
2、使学生分析推理和判断等思维能力得到进一步发展,并初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教学重点:理解分数乘法应用题的解题思路和解题方法。
教学难点:初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教具准备:直尺、小黑板、投影片
教学过程:
一、复习引新
1、 每句话里把哪个量看作单位“1”?其中分数表示的具体意义是什么?
(1) 一块布料,用去3/5。
(2) 一块地3/7种西红柿。
2、 做15页复习题。
问:为什么要用乘法算?这里的一个数和分数相乘表示的是什么意义?
3、 引入新课。
根据一个数和分数相乘可以表示一个数的几分之几是多少,就需要用乘法计算。这节课就根据这样的道理,学习分数的应用题。(板书课题)
二、教学新课
1、教学例1。
(1)出示例1。
请大家找一找,这道题的条件有哪些,求什么问题?
(2)教学解法一。
问:从图上看用4/5,是用去谁的?就是把20米平均分成几份,用去其中的几份?
(3)教学解法二。
请同学们看线段图,讨论可以怎样解答,把它试做一下。
组织学生交流自己的解法和思路。
师帮助学生理解解题思路和方法。
(4)解法比较。
这两种解法实际都是表示把20米平均分成5份,求其中的4份是多少。
2、练一练”第1题。
指名说一说是怎样想的,并强调为什么把全班学生人数看做单位“1”。
3、教学例2。
(1)出示例2。学生读题。
问:有哪几个条件,求什么问题?
根据“一只小鸡的重量是小鸭的2/3”,要先画出表示哪一个量的线段?看着线段图,
(2)按例1想的过程讨论一下,题里把哪个数量看作单位“1”,求小鸡的重量就是求什么?
指名说一说分析过程,
4、教学“想一想”。
(1)让学生找一找,谁是谁的几分之几。
问:用线段图表示题目的意思,要先画哪个数量的线段?为什么?
(2)大家讨论,哪个数量是单位“1”?怎样列式解答?
(3)3/2是什么分数?
条件里一个数量是另一个数量的几分之几,可以是真分数,也可以是假分数。
(1)做“练一练”第2题。
(2)小结。
想一想,这里有哪两种重量,可以画几条线段来表示题意?据哪个条件确定单位“1”的量,接着怎样想,用什么方法解答?
你从上面几题的解答里,发现在里,怎样求单位“1”这个数量的几分之几是多少?
师总结。
巩固练习
(3)说一说下面各题里的单位“1”的量。
看了一本书页数5/6。
杨树的棵数是杉数的3/8。
(4)做练习三第1题。
指名板演,其余学生在练习本上。
集体订正,让学生说一说是怎样想的,数量关系式是怎样的。
(5) 练习三第5题。
问:三道算式有什么相同的地方?为什么都用小乘法算?
三、全课总结。
四、课堂作业:
练习三的1、2、3、4。
板书设计:
先确定单位“1”,接着再想要求的数量是单位“1”这
个数量的几分之几,根据一个数和分数相乘可以表示求一个
数的几分之几是多少,用单位“1”的量乘几分之几。
单位“1”的量×几分之几=对应的量
教学后记:
要点提示
分数应用题 篇16
分数应用题是小学数学教学中的一大难点,在小学数学教学中占有相当重要的地位。引导学生正确分析、解答分数应用题,对于巩固和提高学生的数学基础知识,发展学生的思维能力,提高学生观察问题、分析问题和解决问题的技巧和能力都有积极的意义。学好分数应用题,将使学生开阔视野,拓宽思路,既能熟悉和掌握各种类型分数应用题的内容、特点、数量关系和解答方法,也能提高解答各类复杂分数应用题的应变能力。在实际的教学中,我觉得要学会分数应用题必须扎实地打好两个基础。
一、分数乘法的意义
传统的分数应用题的教法,在找标准量时,让学生死记“是、占、比、相当于”后的量来找单位“1”。题目若求比较量(即所谓“知一求几”),就用乘法来计算;题目若求标准量(即所谓“知几求一”),就用除法来解答。这种机械模仿的呆板教法,不利于学生从根本上理解算理,会严重束缚学生创造性思维的发展,要克服这种弊端,就要加强分数乘法意义的教学。
教学分数乘法的意义时,要注意沟通与整数乘法意义的联系。现行教材100×3就是求100的3倍,100×1.5就是求100的1.5倍,引出100×个数的几倍,实质是一样的。这样使学生感到新知不新,增强学习的兴趣。
二、加强分数乘、除法应用题的对比性练习
分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。因此,在教学时要加强对比,使学生在对比中求新、求异、求同、求实;要灵活多变,使学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。
1.通过对比,加深理解。
如教学例题“小营村有棉田64.8公顷,占全村耕学生用以下方法加以对比:
(1)直观线段图对比。
(2)已知数量的内在联系与解法对比。
全村耕地面积有多少公顷?
全村有耕地64.8公顷。
2.通过多变沟通联系。
如教完分数应用题后,可以组织学生作这样的练习:“甲仓库存粮120吨,_________。乙仓库存粮多少吨?”要求学生分别根据以下各条件列式解答:
数乘法应用题融于一题多变之中。
在教学实践中采用上述方法教学分数乘、除法的意义,不仅能使学生加深对概念的理解,而且能使学生正确地运用概念分析解答分数乘、除法应用题。
分数应用题 篇17
教学目标
1.进一步理解稍复杂的分数除法应用题的数量关系.
2.能够比较熟练地列方程解应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
分析数量关系.
教学难点
找等量关系.
教学过程
一、复习.
(一)找出单位“1”
1.一本书已经看了
2.实际比计划节约
3.今年产量比去年提高
4.乙数比甲数少
(二)谈话导入
今天我们继续学习分数应用题.
二、讲授新课.
(一)教学例7
例7.某工厂十月份用水4800吨,比原计划节约了 ,十月份原计划用水多少吨?
1.读题理解题意,画出线段图.
2.教师提问
(1)哪句话是说明数量关系的?
(2)怎样理解这句话?
(3)你能根据这句话画出线段图吗?
3.分析数量关系
把原计划用水的吨数看作单位“1”,原计划用水的吨数是未知的,可以用 表示.
已知实际用水比原计划节约 ,也就说“计划用水吨数-节约的吨数=实际用水吨数”或者说“原计划用水吨数× =实际用水吨数”.根据这样的等量关系式可以列方程解答.
4.列方程,解方程.
解:设十月份原计划用水 吨.
答:原计划用水540吨.
三、巩固练习.
(一)根据方程补充一个已知条件.
学校种了苹果树和桃树,苹果树有20棵,________________,桃树有 棵.
1.
2.
3.
(二)找出单位“1”,说等量关系.
1.海豚每小时可以游70千米,比蓝鲸的速度快 ,蓝鲸的速度是多少?
2.有一本故事书,小明第一天看了48页,第二天比第一天少 ,第二天看了多少页?
3.李红家一月份用煤气20立方分米,二月份比一月份节约了 ,二月份用煤气多少立方米?
四、质疑小结.
列方程解应用题的关键是什么?和数学方法有什么主要区别?
五、板书设计.
分数应用题
例7.某工厂十月份用水4800吨,比原计划节约了 ,十月份原计划用水多少吨?
解:设原计划用 吨,
答:原计划用540吨.
- 推荐阅读:
- 分数应用题(通用15篇)
- “分数应用题”(精选12篇)
- “分数应用题”(通用14篇)
- 分数应用题
- 分数应用题(练习)
- 分数应用题
- 应用题教学反思
- 应用题教案