您现在的位置是:首页 > 心得体会

比的应用 比的应用题

2024-03-03人围观
简介比的应用 篇1  (3)比的应用教学目标:1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。教学重点:进一步掌握按比例分配应用题的结构特点和解题思路

比的应用 篇1

  (3)比的应用教学目标:1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。教学重点:进一步掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答比例分配应用题。教学过程:一、复习。1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)二、新授。1、教学例2。(1)出示例2:(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)① 稀释液平均分成的份数:1+4=5② 11+4浓缩液的体积:500× =100(ml)③ 1+44水的体积:500× =400(ml)答:稀释液100ml,水400ml。(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)2、补充练习(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)(4)怎样分别算出各班应种的棵数?引导学生解答:① 三个班的总人数:47+45+48=140(人)② 一班应栽的棵数: 280× = 94(人)③ 二班应栽的棵数: 280× = 90(人)④ 三班应栽的棵数: 280× = 96(人)答:一班栽树94棵,二班栽树90棵,三班栽树96棵。(5)学生进行检验。(6)学生试做“做一做”中的第2题。三、巩固练习。练习十二的第1、3题。四、布置作业。练习十二第2、4、5、6、7题。教学追记:本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。

比的应用 篇2

  【教学内容】新世纪小学数学六年级上册第55页【教材分析】 数学教学内容应该是与现实密切联系的数学,能够在实际中得到应用的数学,即“现实的数学”。新世纪小学数学六年级上册《比的应用》这部分教学内容,恰恰具备了这样的特点,应该说它是学生对比的完整认识的重要组成部分。之前,除法、分数的认识,为学生认识比搭建了坚实的台阶,比的意义和化简比的学习,为比的应用铺平了道路,平均分方法的掌握和对平均分结果特点的理解为学生能够自主研究比的应用提供了策略上的可能。而且比的应用的研究,也将为学生后续知识正比例的学习积累重要的感性经验。【学习目标】1、 知识与技能(1) 能运用比的意义解决按照一定的比进行分配的实际问题。(2)通过动手操作和数形结合等方式进一步体会比的意义,发展应用意识。2、过程与方法(1)经历问题解决的过程,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。(2) 通过动手操作、合作探究,相互交流,发展问题解决能力、合作交流能力和创新能力。3、情感态度与价值观(1)在问题解决过程体验成功的喜悦,对数学产生良好的情感。(2)在探究活动过程中感悟数学文化的魅力。【教学准备】小旗,水杯、水、筷子,课件【教学过程】一、情境引入 奥运圣火已经点燃,奥运盛会即将在北京召开,我想我们每一个人都希望为奥运会贡献自己的力量。今天我们也做一回奥运小使者,把奥运精神带进幼儿园。现在我们有一些印有奥运会会徽的小旗想要送给幼儿园的小朋友。[设计意图]渗透爱国主义思想教育。1. 幼儿园有两个班,要把这些小旗分给这两个班,你觉得怎么分比较合理呢?为什么?学生可能的答案:人数相同的情况下平均分,因为这样每个人分到的会同样多。2. 经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?学生可能的答案:不合理,因为每个人分到的就不一样多了。怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。学生可能的答案:按人数比30 :20 = 3 :2进行分配。3、3 :2表示什么意思?[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。二、问题解决活动1:合作研究怎样按3 :2 这个“比”来分配为了研究方便,老师给大家提供了一些小旗。(一)合作研究1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数) 大班小班第一次 第二次 第三次 第四次 第五次 大班分得面小旗小班分得面小旗2.学生合作研究3.教师组织反馈交流u 老师在巡视的过程中,收集约三种不同的分法,分步展示在投影上。u 四人一组交流讨论要求(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?(2)观察、比较这几种分法,你能发现什么? 插问:你觉得分一次至少需要多少面小旗?为什么?也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?学生可能出现的方法预设:分法1:每次分给大班3面,分给小班2面。表扬:认真有耐心,十二次。分法2:根据比的基本性质分,分的次数明显减少。表扬:很会动脑筋,在分的过程中及时进行了调整。分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。表扬:很会联系实际情况,这种分法在实际生活中非常实用。[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力(二)验证1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的? 大班小班分得小旗的总面数 人数 平均每人分到小旗的面数 30 :20 = 3 :2 = 36 :242.师生一起小结:(1) 平均每人分到的小旗同样多吗?(2) 把这些小旗按大班和小班的人数比来分配是合理的分法吗?(3) 虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。(三)当我们知道总数的情况下的按比分配1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?2.四人一组交流,说说你想到的方法。课件配合演示学生可能的答案:方法1:按比逐次分配。方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小国旗。方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?三、问题解决活动2:体验比的应用的广泛性(一)问题情境因为同学们表现得太出色了,老师带来了一个小礼物想要送给大家。请同学们认真倾听。边听边观察思考,你能发现什么?(二)师生活动1、 看《小星星》演奏的视频学生可能发现了水的体积和空着部分的容积竟然存在着一个比。2、 出示如下信息:杯子的容积:320ml,杯子装满水敲击出的声音为1。音阶杯水的体积与空着部分的容积的比229:3325:7423:9537:2761: 33、 提问:“29 :3表示什么意思?”。4、 算一算2这个音所需的水量。5、 每位同学选择一个自己喜欢的音,计算出所需水量。6、 教师组织反馈交流7、 倒水演奏8、 小结:比与音乐的关系最早是由古希腊的著名数学家毕达哥拉斯首先发现的,老师认为你们真的很了不起,是今天课堂上里最闪亮的小星。[设计意图]通过比与音乐的关系,拓宽学生的数学视野,体验比的应用的广泛性,培养学生的数感,感悟数学文化的魅力。四、问题解决活动3(拓展练习):用数形结合的方法,加深对比的意义的理解。(一)情境与问题花坛设计稿征集启示:某小区修建了一个36平方米的正方形大花坛,决定在花坛中栽种菊花、兰花和月季,两种花卉的种植面积的比是2 :3 :4,每种花卉的种植面积是多少平方米?请设计出栽种的方法,并画出示意图?(菊花用黄色,兰花用蓝色,月季用红色) (二)师生活动1. 提问:“2 :3 :4表示什么意思?”。2. 学生计算并根据比设计花坛。3. 教师组织反馈交流。4. 教师小结。五、总结今天的学习,你有哪些收获和感受?1、通过这节课的学习你对比有了哪些新的认识?2、把一些事物按一定的比分的时候,可以用哪些策略?3、你在生活中还能找到比的应用的例子吗?【我的思考】一、经历问题解决过程,体验策略多样性,感悟数学文化魅力随着社会的进步,科学技术的发展,义务教育的全面实施以及数学科学自身的发展,许多国家和地区都对数学课程进行了不同程度的改革,但是都几乎无一例外的把问题解决作为数学课程的重要目标之一。当学生面对实际问题或非常规问题时,能够主动利用数学的思想方法,努力的寻找解决问题的策略,并力图最终使问题得到解决。这种能力将会在学生步入社会时,使他迅速的调整和适应新的环境。所以它也成为我们新《数学课程标准》的焦点。使学生经历问题解决的过程,不仅是能力培养的需要,还是一种心理发展的需要。每个孩子都具备解决问题的潜力并渴望能够在解决问题时获得成功。不能不说,问题解决的过程将使孩子面对智慧和心理的双重考验,但同时也会从中获得双方面的提升。二、六年级的学生,还需要分一分吗这个问题也曾经不断的困扰我。但经过一段时间的研究后,我终于彻悟,在这里分一分与算一算具有同等地位。首先说按比分的策略我认为基本有两大类:(1)不数出总数,按比逐次分配,直至分完,结果即为按比分配的结果。(2)先数出总数,通过计算得出按比分的最终结果,在经过一次分配完成。而且第一种方法在不知总数又不方便得到总数的情况下很有实用价值。因此我设计了给幼儿园两个人数不同的班怎样合理分配小国旗的问题情境,让学生在具体的情境中进行实际操作探究,从而解决问题。“分一分”使学生切身体验到了比的意义深化过程。因为学生每一次都是在按人数比分配小国旗,每一次分得小国旗的面数比都是3 :2,最后两班分别共分得小国旗面数的比也是3 :2,成功地完成了人数比到小国旗面数比的深化,突破了教学难点。3、 拓宽学生的数学视野,感悟数学文化的魅力。不是每个人都能成为数学家,但应当使每一个公民都在一定的程度上学会“数学地”思考,即要实现数学教育发展学生数感的目的。当我们遇到可能与数学有关的问题时,一个数感发展好的学生能够自然地、有意识地把问题与数学联系起来,或者试图进一步用数学的观点和方法来处理和解释。这也就是主动地、自觉地甚至自动化地把数学应用于实际生活的思维过程。古希腊的著名哲学家、数学家毕达哥拉斯首先发现了比与音乐的关系,他比任何人更早地把一种看来好像是质的现象——声音的和谐量化。为此我设计了怎样利用比的知识,使玻璃杯敲出美妙音乐的有趣地问题解决活动。期望在这个活动中,让学生体验到比与音乐之间奇妙的联系。通过拓展学生的数学视野,让学生体会到世界上所有的事物,都可以成为他们发现数学元素和研究数学问题的题材。【网络研讨与评论】编写组特约指导教师教材编委、特级教师钱守旺的主要评论:l 这部分内容,新世纪小学数学教材的设计是有特色的。如果没有给出总数,怎样按3 :2 这个比来分配呢?面对这样的问题,很自然,学生首先要去理解这个3 :2 是什么意思呢?l 看了你的设计、又听了你的说课,我觉得前半部分设计还是比较好的。尤其是刚开始的引入部分,比较自然、新颖;操作活动的设计可能也更便于孩子操作。l 后半部分,活动:“杯琴”的活动建议“演奏”不必太做大。出于时间方面的考虑,把它做为数学文化介绍给孩子们就可以。如果做大,会占用很长时间。数学文化的渗透应适度,不要占时太长;教学应更多关注中、下的学生,不应过于重视形式上的东西,强化更基础的东西会更关注多数学生的发展。做为第一课时,应有一些基本的练习,书上的一些题目应穿插在我们的课堂教学当中。l 课堂热闹并不等于教学效果好,现在很多老师总是一味求新,其实这是一种偏差。l 尽可能在第一课时不要出现连比。l 这节课有两个方面还应该进一步地突出:那就是比与原来的平均分、还要联系比与分数之间的关系。网友“六年级”的评论: 1.使学生经历了探索解决问题策略的过程。2.课程设计由浅入深,循序渐进,符合学生的认知规律。 3.操作活动的设计使学生在体会数学与生活密切联系的同时,激发了学生浓厚的学习兴趣。网友“林志杰”的评论:在这里,我感受到了政治、经济、文化中心的人才果然很有深度不管在教学教学水平还是在教研方面以及个人能力方面。网友“生洁”的评论:我非常喜欢送奥运小红旗这个活动,在数学教学中也体现了我们的政治人文,与生活结合非常紧密.音乐与比的关系这个活动非常新颖,相信学生都会喜欢,而且从此激发他们学习和探究的兴趣。网友尚待解答的困惑:l 如果有学生仅停留在平均分的水平上。教师该怎么引导他按3:2分?l 比的性质没有学,会不会影响比的应用?l 百分数和比是不是数?

比的应用 篇3

  课题三:比的应用(a)

  教学内容

  教科书第52页的例2和第53页的例3及它下面的“做一做”,练习十三的第1~4题.

  教学目的

  使学生理解按比例分配的意义,初步掌握按比例分配应用题的特征及解题方法,培养学生应用所学知识解决实际问题的能力.

  教具准备

  投影仪.

  教学过程

  一、复习

  1.口答.

  (1)什么叫做比?

  (2)100公顷的是多少公顷?

  (3)火车每小时行80千米,汽车每小时行60千米,火车与汽车的速度的比是多少?

  2.准备题(出示投影片).

  一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米.小麦和玉米各播种多少公顷?播种面积的比是多少?

  3.引入课题.

  上面这道准备题,是把100公顷平均分成2份,这是一道平均分配的应用题.在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配.比如,配制一种混凝土需要2份水泥、3份沙子和5份石子.这种把一个数量按照一定的比来进行分配的方法通常就叫做按比例分配.

  (板书课题:比的应用──按比例分配)

  二、新课

  1.做教科书第67页的复习题.(出示投影片.)

  读题,引导学生思考,然后让两名学生在黑板上板演,其他学生在练习本上做.教师巡视,同时注意看板演的两名学生的解题过程,以便对可能出现的问题进行分析.

  订正时,在学生得出小麦和玉米的播种公顷数的比是3∶2后,可以提问学生:在100公顷地里种的小麦占多少份?种的玉米占多少份?一共有几份?(种的小麦占3份,玉米占2份,一共有5份.)如果已知总的播种面积和小麦、玉米的播种面积之比,能不能求出小麦和玉米的播种面积呢?又该怎样求?

  2.教学例1.

  出示例1,并让学生读题.

  引导学生分析题意.提问:这是一道按比例分配的题,要分配的是什么?按照什么分配?

  (要分配的是小麦和玉米播种的总面积,按照小麦和玉米播种面积的比是3∶2来分配.)

  学生回答后再问:小麦和玉米的播种面积的比是3∶2,说明在这100公顷的地里,小麦地占几份?玉米地占几份?一共是多少份?

  (小麦地占3份,玉米地占2份,一共是5份.)

  板书:(1)总面积平均分成的份数:3+2=5

  进一步提问:根据总份数和小麦、玉米各占的份数,小麦地占总面积的几分之几?玉米地占总面积的几分之几?

  (小麦地占,玉米地占.)

  让学生在练习本上列出算式,求出小麦和玉米各自的播种面积.

  那么,播种小麦的面积和播种玉米的面积该怎样求呢?

  教师同时板书:(2)播种小麦的面积:

  (3)播种玉米的面积:

  指名一学生在黑板上板演,教师注意巡视,学生计算完后集体订正.

  指名学生进行检验,然后指出:应用题计算后,一般都要进行检验.这道题可以有两种检验方法:一种是把求得的播种小麦和玉米的公顷数相加,看是不是等于播种的总面积;另一种是把求得的小麦和玉米的播种面积写成比的形式,看化简后是不是等于3∶2.再叫几名学生回答自己的检验情况.

  3.做教科书第68页“做一做”的第1题.

  先让学生读题,然后提问:六一班和六二班订《少年科学》的人数之比是3∶4,说明六一班订的份数占总份数的几分之几?六二班订的份数占总份数的几分之几?

  让学生集体回答后,各自做在练习本上.

  教师注意巡视,做完后指名学生说说自己的解题过程和检验方法.

  4.教学例3.

  出示例3.

  教师读题,然后提问:这道题要分配的是什么?按照什么分配?

  让学生明确这道题要分配的是280棵树,是按照一班、二班、三班的人数的比来分配.

  再问:那么,怎样根据各班的人数算出各班栽树的棵数占总棵数的几分之几?

  引导学生想到:可以根据题目中的各班人数,求出各班人数占总人数的几分之几,就等于各班栽树的棵数占总棵数的几分之几.

  板书:三个班的总人数:47+45+48=140(人)

  再问:那么一班应栽的棵数占总棵数的几分之几?

  这样,一班应栽的棵数是──

  (教师边叙述边板书,让学生口述怎样列算式:280×=94棵.)

  提问:二班应栽的棵数占总棵数的几分之几?三班应栽的棵数占总棵数的几分之几?

  然后让学生打开书看第68页,分别算出二班、三班栽树的棵数,填在书上,并让学生进行检验.

  5.做教科书第68页“做一做”的第2题.

  先让学生读题.

  教师提问:这道题要分配的是什么?按照什么分配?(要分配的是500千克什锦糖,按照奶糖、水果糖和酥糖之比3∶5∶2来分配.)

  提示学生:根据三种糖之比,得到的总份数是多少?在这500千克什锦糖中,每一种糖各占几分之几?

  让学生做在练习本上.教师注意巡视,然后集体订正.

  6.做教科书第68页“做一做”的第3题.

  先引导学生弄清这道题要分配的是什么?按照什么分配?怎样根据三角形三条边的长度之比得到三条边各占周长的几分之几?

  然后让学生独立完成,教师巡视,做完后集体订正.

  三、巩固练习

  1.填空.

  (1)把35千克苹果平均分成7份,每份是(  )千克,2份是(  )千克,5份是(  )千克.

  (2)某班男女生人数的比是3∶4,男生占全班人数的,女生占全班人数的.

  2.做练习十八的第1、2题.

  先让学生独立完成,教师注意巡视,做完后集体订正.

  四、作业

  练习十三的第3、4题.

比的应用 篇4

  人教版第十一册数学

  ——按比例分配

  主设计者:吴孝红

  教学内容:小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。

  教学目标:1、使学生理解按比例分配的意义。

  2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

  3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

  教学重点:掌握按比例分配应用题的解题方法。

  教学难点:按比例分配应用题的实际应用。

  教学准备:自制多媒体课件。实物投影仪。

  教学过程:

  一、复习引入:

  1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

  学生汇报:

  (1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

  (2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

  (3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

  (4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

  (5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

  (6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

  2、口答应用题

  六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

  口答:100÷2=50(平方米)

  提问:这是一道分配问题,分谁?(100平方米)

  怎么分?(平均分)

  六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

  在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

  指出:按比例分配就是把一个数量按照一定的比来分配。

  二、讲授新课

  1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

  1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

  小组汇报:

  (1)六年级的保洁区面积是二年级的 倍

  (2)二年级的保洁区面积是六年级的

  (3)六年级的保洁区面积占总面积的

  (4)二年级的保洁区面积占总面积的

  ……

  3、课件演示

  4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)

  方法一、3+2=5 100÷5=20(平方米)

  20×3=60(平方米) 20×2=40(平方米)

  方法二、3+2=5 100× =60(平方米)

  100× =40(平方米)

  ……

  5、这道题做得对不对呢?我们怎么检验?

  ①两个班级的面积相加,是否等于原来的总面积。

  ②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

  ……

  6、练习:

  如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

  学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

  (1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。

  (2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

  (3)问:315本书按照人数分配,就是按照怎样的比来分配呢?

  (4)学生独立解答。

  (5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  8、小结:观察我们今天学习的按比例应用题有什么特点?

  三、开放运用,体验成功

  小明九月份共用去零花钱30元,具体用途及分配情况见下表:

  零花钱30

  买学习用品

  买零食

  玩游戏机

  1

  3

  6

  

  

  

  1.你能算出小明的各项支出是多少元吗?

  2.看了这张表,你有什么想法?如果是你,你会怎样安排这30元零花钱?能用表格展示出来吗?

  1、反馈。实物投影出示学生的表格,并让学生说说理由和计算钱数的方法。

  四、总结:

  今天的学习你有什么收获呢?

  五、布置作业:练习十三的第1~4题。

比的应用 篇5

  教学内容:人教版54页例2

  教学目标:

  1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

  2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

  3、通过实例使学生感受到数学来源于生活,生活离不开数学。

  教学重点:

  1、正确理解按比例分配的意义。

  2、掌握按比例分配应用题的特征和解题方法。

  教学难点:能正确、熟练地解答按比例分配的实际问题。

  教学过程:

  一、课前组织复习旧知

  同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

  学生自由发言,预设推断如下:

  1、全班人数是9份,男生占其中的5份,女生占其中的4份。

  2、以全班为单位“1”,男生是全班的,女生是全班的。

  3、以男生为单位“1”,女生是男生的,全班是男生的。

  4、以女生为单位“1”,男生是女生的,全班是女生的。

  5、女生比男生少(或20%)。

  6、男生比女生多(或25%)。

  追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

  二、探索方法,建立模型

  1.理解题意

  (1)什么是稀释液?怎样配置的?

  (2)什么是按比例分配?

  2.自主探究,合作学习

  自学数学书p49例题2,思考:

  (1)你从例题2中得哪些信息?

  (2) 1:4表示什么?你从中得到哪些信息?

  (3)你能用画图的方法给同位讲解吗?

  (4)方法一先求什么?再求什么?方法二先求什么?再求什么的?

  3.小组展讲

  小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。

  三、巩固练习

  1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

  2.填空

  3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?

  4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?

比的应用 篇6

  教学目标:

  1、使学生进一步认识比的意义和基本性质,掌握求比值和化简比的方法,弄清两者的区别;使学生进一步认识按比例分配问题的结构特征,加深理解并掌握按比例分配问题的解题思路和方法,提高分析推理和解答应用题的能力。

  2、使学生初步学会分类整理的方法,感受到事物是相互联系的。

  3、培养学生分析、判断、推理、概括的能力,使学生养成合作学习和勇于探索的良好品质。

  教学过程:

  一、揭示复习内容

  今天我们一起来整理有关比和比的应用的知识。

  二、结合情境,搜集概念

  1、师生谈话

  哪位同学能用“比的知识”说说男同学、女同学和全班人数的关系?

  预设学生可能会有以下几种答案:

  男同学和女同学人数的比是( )

  女同学和男同学人数的比是( )

  男同学和全班人数的比是( )

  女同学和全班人数的比是( )

  男同学比女同学多的和全班人数的比是( )

  ………

  2、刚才大家说出了一些比,同学们再想一想,在“比的意义和性质”单元里,我们学习了哪些知识呢?

  根据学生的回忆,课件随机出示如下内容:

  比的意义,比值的意义,比的基本性质,比与除法和分数的关系

  求比值,化简比,按比例分配。

  三、叙述概念意义,梳理知识网络

  1、叙述概念意义

  我们学习了和比相关的一些概念及知识,大家还能记得吗?给你们几分钟时间,请同学们回忆一下,在小组内互相说一说。

  学生分小组活动,教师巡视,发现学生有困难及时给予帮助。

  2、师生多向交流,梳理知识网络

  下面请同学们来展示一下小组学习的成果。我们采用小组竞赛的形式好不好?这样吧,每个小组派代表提一个问题,指明另一个小组来回答。回答的时候,可以是一个人回答,也可以小组成员补充。比比看哪位同学的回答最精彩!哪个小组的表现最棒!哪个小组先来提问?

  预设可能会出现以下几种类型的问题:

  a:单纯的考察概念的意义及性质的内容

  如:什么叫做比?什么是比的比值?怎样求比值?什么是比的基本性质?什么是化简比?比与除法和分数有什么关系?等等。

  b:综合性的问题

  如:求比值与化简比有什么不同?比的基本性质中为什么要规定零除外呢?比与除法和分数的关系中为什么用“相当于”而不说“就是”呢?比的基本性质与分数的基本性质、商不变性质有什么相通之处吗?等等。

  教师参与学生的提问和回答,适时引导学生理解并掌握相关概念及知识,并根据学生的提问和回答及时板书相关内容,形成知识网络图。

  比和除法、分数既有联系,又有区别。(表格出示)

  联系是:

  形像:比的前项相当于除法中的被除数,相当于分数中的分子;

  比号相当于除法中的除号,相当于分数中的分数线;

  比的后项相当于除法中的除数,相当于分数中的分母。

  神像:比的基本性质与商不变的性质、分数的基本性质实质是一样的。

  区别是:

  比——是两个数之间的一种关系;

  除法—— 是一种运算;

  分数——是一个数。

  数学中的比与体育比赛中出现的比是不一样的。

  数学中的比,比较的是两个数之间的倍数(或分率)关系;

  比赛中的比,比较的是两个数的差。

  3、运用

  过渡:刚才大家说的非常好,下面老师来考考大家能否用这些知识来解决实际问题。

  练习打印在练习纸上,每位学生一张。

  课本114页第4题

  突出化简比和求比值的联系与区别,使学生认识到:可以根据化简的结果,直接得出比值;也可以根据比值,推出化简的结果。

  填空:

  (1)6∶2的比值是( ),把这个比化成最简单的整数比是( )

  (2)把10分∶0.2时化成最简单的整数比是( ),它的比值是( )

  (3)一辆汽车5小时行驶240千米。这辆汽车行驶的路程与时间的比是( );行驶的时间与路程的比是( )。

  (4)0.25=5∶( )=( )÷8=

  4、复习按比例分配问题

  过渡:刚才的几道题同学们回答的非常棒!应用比的知识,我们还可以计算按比例分配的问题。

  (1)请大家完成练习纸上第二题:一个养鸡场养鸡3600只,其中公鸡与母鸡只数的比是1∶7。公鸡和母鸡各有多少只?

  (2)学生汇报各自的解题方法。

  (3)小结:教师根据学生的汇报适时归纳总结:解答按比例分配问题一般是把比转化为分数,再按求一个数的几分之几是多少的方法来解答;也可以先求出一份是多少,再分别求出几份是多少。

  (4)口答

  一种糖水是由糖和水按1∶9的重量比配制而成的。500克糖水中,含糖和水各多少克?

  一个长方形的周长是30厘米,长和宽的比是3∶2。求这个长方形的面积。

  四、综合应用

  1、判断

  (1)大圆的半径是小圆半径的3倍,则小圆面积与大圆面积的比是1∶9。 ( )

  (2)一项工程,甲独做5天完成,乙独做8天完成,甲、乙的工作效率比为5∶8。 ( )

  (3)把一个圆柱体木料削成一个最大的圆锥,削去部分和圆锥体积的比是2∶1。 ( )

  2、填空

  (1)被减数和减数的比是7∶3,减数与差的比是( )。

  (2)在一个直角三角形中,两个锐角度数比为5∶4,其中较小的一个锐角是( )度。

  (3)甲仓库存粮比乙仓库多,那么乙仓库存粮比甲仓库少( ),乙仓库存粮与两仓库总数的比是( )。

  3、应用题

  (1)课本第116页第16题

  (2合唱组男、女生人数的比是5∶7,已知女生有35人,男生比女生少多少人?

  (3)甲箱有球100个,乙箱有球80个,从甲箱取出多少个放入乙箱,甲、乙两箱球个数的比是7:11?

  五、总结

比的应用 篇7

  一,填空题:

  1,六(1)班有男生20人,女生30人,男生与女生人数的比是( ),男生与总人数的比是( ).

  2,甲数是乙数的 ,甲数与乙数的比是( ).

  3,一本书,看了 ,看了的与没看的比是( ).

  4,21:10= 读作:( )

  5,甲,乙,丙三个数的平均数是60.甲,乙,丙三个数的比是3∶2∶1.甲,乙,丙三个数分别是( ),( ),( ).

  6,一个直角三角形的两个锐角度数的比是2∶1,这两个锐角分别是( )度,( )度.

  7,五角人民币与贰角人民币的张数比为12∶35,那么伍角与贰角的总钱数比为( ).

  8,甲,乙,丙三个人的速度的比为:甲∶乙=4∶5,乙∶丙=6∶7.从a地到b地,甲走了20分钟,丙要走( )分钟.

  9,大,小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3∶2.求大,小瓶里分别装油( )千克,( )千克.

  10,甲数除以乙数的商是0.35,甲乙两数的最简整数比是 .

  二,求比值

  24:32 56:14 15:25 0.8 :

  三,化简比

  128∶34 ∶ 0.54∶2.7 1.42∶

  四,判断

  1,如果甲数与乙数的比是1:2 ,那么乙数:甲数=5:2…………( )

  2,一杯盐水,盐占盐水的 ,盐和水的比是1:9………………( )

  3,小英买5本练习本用1.50元,总价与本数的比是1.50:5……( )

  4,比的后项不能是0…………………………………………………( )

  5,六一班有男生25人,女生24人,女生和全班人数的比是24:25( )

  五,解决问题

  1,沙,石共36吨,沙与石的比是1∶8,沙,石各是多少吨

  2,一个长方形周长是88cm,长与宽的比是4∶7.长方形的长,宽各是多少厘米 面积是多少

  3,男工40人,男工与女工的比是4∶5,女工有多少人 一共有多少人

  4,一种什锦糖是由水果糖,奶糖,软糖按5∶3∶2混合而成的.

  (1)如果先称20千克的水果糖,奶糖与软糖各需多少千克

  (2)如果先称出15千克的奶糖,水果糖与软糖各需多少千克

  5,男工与女工的比是4∶5,女比男多4人,男,女各多少人

  6,一桶油用去的量占剩下的,已知这桶油共有50千克,用去了多少千克 还剩下多少千克

  7,一套西装320元,其中裤子的价格是上衣的,上衣和裤子的价格各是多少元

比的应用 篇8

  学习目标:

  1、应用比的意义,解决按照一定的比进行分配的实际问题。

  2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。

  学习重点:

  应用比的意义,解决按照一定的比进行分配的实际问题。

  【学情分析、教材处理】:

  六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。

  【教学准备】:水杯、水、鲜奶、茶、秤、课件

  【教学过程】:

  一、分配礼物

  师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?

  1、想一想

  ①我将礼物的一半给男生、另一半给女生,你们说怎么样?

  ②如果你觉得不太合理,那你们认为我应当怎样分呢

  ③调查班级男女生人数

  ④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?

  如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……

  ⑤为什么这么多的分法你们都认为合理呢?,

  师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。

  【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的。】

  2、分一分(教师拿出纸杯)

  ① 不知道有多少杯子,你建议怎么分呢?

  ② 依照学生的建议分杯。

  教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果

  ③各种分杯建议的结果一样吗?为什么?

  ④这些分杯的方法哪一种最好?

  师:方法没有最好,只有最适合,如果知道总的数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。

  3、比一比

  ① 出示“两袋鲜奶”。直接给男生一袋、女生一袋

  思考:这是平均分呢?还是按比分呢?(生答)

  ② 其实,平均分也是按比分的一种,这个比就是1:1。

  ③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)

  【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;再让学生实际分一分,感受逐次分和按比分的结果相同;最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激qing被又一次点燃。】

  二、配制奶茶

  1、制茶前明确:

  a、 制作奶茶需要什么材料?

  b 、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?

  c、:那你们想想要按着怎样的比来配呢?谁来提议一下?

  d、 谁理解这个比的含义了?

  e、哪一个单位最合适呢?

  2、回归具体的量

  a 、 顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?

  b 、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)

  想一想,你要用什么办法解决这个问题?

  【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】

  c、学生自己解决问题,再汇报后

  方法1:联系除法

  方法2:联系分数

  方法3:综合方法

  方法4:方程方法

  【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】

  c、学生自己解决问题,再汇报后

  方法1:联系除法

  方法2:联系分数

  方法3:综合方法

  方法4:方程方法

  【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】

  4、品尝奶茶后的思考

  a、感觉怎么样?有什么改进的建议?

  b、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗

  师:我这一勺是多少你才认为可以在这个比中占1份呢?

  c 、小结:的确,几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?

  d、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)

  e、 师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)

  【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】

  三、回归生活

  师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?

  1、第一站:某大学后勤部

  今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)

  2、第二站:四丰农药加工厂

  农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)

  3、第三站:木材加工厂配料车间

  下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。

  【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】

  4、第四站:人民法院民事审判厅

  案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39

  万元,两个人由于没事先约定,发生争执,提出诉讼。

  ① 你们想要什么条件呢?

  ② 材料提供:1、建厂时,李某出资5万元,王某出资3万元。

  2、经营时,李某出勤10个月,王某出勤12个月。

  3、创效益,李某签定6万元合同,王某签定8万元合同。

  ③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?

  提供法律依据:合伙企业法第33条规定

  “ 合伙企业的利润分配、按照合伙协议的约定办理;合伙协议未约定或者约定不明确的,由合伙人协商决定;协商不成的,由合伙人按照实缴出资比例分配;无法确定出资比例的,由合伙人平均分配。”

  ⑤ 现在你知道法官怎么分配财产的了吗?

  【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】

  四、总结反思

  ①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)

  ② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。

比的应用 篇9

  人教版第十一册数学比的应用

  ——按比例分配

  主设计者:吴孝红

  教学内容:小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。

  教学目标:1、使学生理解按比例分配的意义。

  2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

  3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

  教学重点:掌握按比例分配应用题的解题方法。

  教学难点:按比例分配应用题的实际应用。

  教学准备:自制多媒体课件。实物投影仪。

  教学过程:

  一、复习引入:

  1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

  学生汇报:

  (1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

  (2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

  (3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

  (4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

  (5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

  (6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

  2、口答应用题

  六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

  口答:100÷2=50(平方米)

  提问:这是一道分配问题,分谁?(100平方米)

  怎么分?(平均分)

  六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

  在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

  指出:按比例分配就是把一个数量按照一定的比来分配。

  二、讲授新课

  1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

  1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

  小组汇报:

  (1)六年级的保洁区面积是二年级的 倍

  (2)二年级的保洁区面积是六年级的

  (3)六年级的保洁区面积占总面积的

  (4)二年级的保洁区面积占总面积的

  ……

  3、课件演示

  4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)

  方法一、3+2=5 100÷5=20(平方米)

  20×3=60(平方米) 20×2=40(平方米)

  方法二、3+2=5 100× =60(平方米)

  100× =40(平方米)

  ……

  5、这道题做得对不对呢?我们怎么检验?

  ①两个班级的面积相加,是否等于原来的总面积。

  ②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

  ……

  6、练习:

  如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

  学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

  (1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。

  (2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

  (3)问:315本书按照人数分配,就是按照怎样的比来分配呢?

  (4)学生独立解答。

  (5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  8、小结:观察我们今天学习的按比例应用题有什么特点?

  三、开放运用,体验成功

  小明九月份共用去零花钱30元,具体用途及分配情况见下表:

  零花钱30

  买学习用品

  买零食

  玩游戏机

  1

  3

  6

  

  

  

  1.你能算出小明的各项支出是多少元吗?

  2.看了这张表,你有什么想法?如果是你,你会怎样安排这30元零花钱?能用表格展示出来吗?

  1、反馈。实物投影出示学生的表格,并让学生说说理由和计算钱数的方法。

  四、总结:

  今天的学习你有什么收获呢?

  五、布置作业:练习十三的第1~4题。

比的应用 篇10

  人教版小学数学第十一册《比的应用》教案

  河北省唐山市开平区八里小学 刘海香

  教学要求:使学生能够应用比的意义,初步掌握解答按比例分配应用题的方法。

  教学重点:掌握解答按比例分配应用题的步骤。

  教学难点:掌握解题的关键。

  设计思路:通过小组合作解决现实生活中的焦点问题,从而激起他们探求新知的兴趣,自己找到解答按比例分配应用题的方法。并培养他们用数学知识解决生活中的问题的能力。

  教学过程:

  一、激情导入

  大家看老师给你们安排的座位就知道这节课我们采用的主要是小组合作学习这种方式,希望大家在学习的过程中团结合作,充分发挥集体的智慧,那么大家先商量一下,给你们小组起个名字吧,起好之后派一名代表将组名写到黑板上。

  二、复习,创设情境

  复习题:六一班有男生16人,丝生人,则男生和丝生人数的比为( ):( ),男生占( )份,女生占( )份,男生占全班人数的( )/( ),女生占全班人数的( )/( )。

  师:谁来完成填,以小组为单位在课堂上调查一组数据并将调查结果填在调查表上,调查表如下:

  我们小组调查的是( )和( )这两个量,这两个量的比是( ):( ),其中( )量占( )份,( )量占( )份,( )量占两之和的( )/ ( ),( )量占两量之和的( )/( )。

  师:打开电视或是翻开报纸,媒体竞相报道的就是伊拉克战争,战争带给伊拉克人们的是什么?大家看这么一组统计数字。

  三、自主探索,学习新知

  例2:根据伊拉克政府提供的数字,截止到4月2日,在伊拉克战争中,伊拉克的平民约有6850人伤亡,其中死亡和受伤的人数比为25:112,请你求出死亡和受伤各有多少人?

  师读题,请小组成员讨论一下,这道题该怎么做?如果有了结果,请各组派一名代表将算式列在你们组名的旁边,计算时可以用计算器。

  生分组交流,并将答案写在黑板上。

  师:大家看这道题一共有几种做法,如果你对哪个小组的做法有问题尽可以发问。

  生之间进行交流,从而发现用按比例分配解决这道题的方法。

  师:你们用以前学过的旧知识解决了新问题真不错!

  师:我也有一个问题,你们的答案是否正确,你们检验了吗?允许生有少顷的讨论。

  生:因为这道题实际上是把6850人分成了两部分,一部分是死亡的人,另一部分是受伤的人,所以可以用1250+5600,看是否得6850。

  师:说得太棒了,也就是将伤亡的人数进行了分配。同学们,老师告诉大家,在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法就叫做按比例分配,例2题就是把6850按照25:112来进行分配的,就是按比例分配的应用题。同学们,当你们看到死亡1250人,受伤5600人这两个数字后,你们有什么感想?

  生谈感想

  师:面对着大量流离失所,饱受战争之苦的伊拉克平民,面对着大量无辜的伊拉克平民的尸体,世界上许多国家对伊拉克提供了人道主义援助,大家看例3.

  例3:中国政府向伊拉克难民授助了500顶帐蓬,俄罗斯政府为伊拉克平民援助了60万吨粮食,伊拉克议会经过协商,决定将这批粮食按照人口数分发给受轰炸比较严重的三个城市:巴格达、基尔库克和巴士拉。这三个城市的人口分别为500万人,24万人和76万人。假如你是伊拉克的政府官员,你将如何分配这批粮食。

  师:各位官员,你们马上召开会议讨论一下吧,如果有了结果,请将你们的分配方案写到黑板上,比一比,看看哪组的工作效率高?

  生板演他们组的做法:

  师:下面我们召开一个小小的记者招待会,各位小记者,你们认为这个分配方案合理吗?对于黑板上的算式,你们有没有什么问题,需要这几位官员给你们解释一下?

  如果有不同的看法可以适时的举行一场辩论会,从而使学生掌握解答按比例分配应用题的方法。

  师:你认为这道例题属于哪种类型的应用题?为什么?遇到按比例分配的应用题,我们该怎么做?

  师:你们可真了不起,能够开动脑筋,从不同的角度思考问题,并且能够通过小组学习来自己解决问题,看来呀还是团结起来力量大,你看你们竟然通过自己的努力就研究出了解答按比例分配应用题的方法。接下来,我们继续应用今天所得到的知识来解决一些日常生活中的实际问题,好不好?

  四、巩固内化,解决生活中问题

  1、据卫生部统计的数字,截止到4月21日,中国大陆共报告非典型肺炎2001例,其中治院,尚在治疗中和死亡人数的比为1201:708:92,请你求出在这次疫情中,已经治院、尚在治疗中和死亡各多少人?

  师:请大家拿出课堂练习本,将这道题做在本上,如果有谁做完了,请前五名同学和我击掌祝贺。

  师:请第一个做完的同学找个人读答案。

  师:看来非典型肺炎并不可怕,只要积极预防,大家尽可以放心地学习和工作。

  2、小李、小王、小张三个人是合伙博彩的彩民。他们采用合作出资,共同选号的方式来购买彩票,幸运的是他们中了特等奖,老师这儿有一张调查表,上面记录了三个朋友中奖金额和投注额。

  合伙博彩情况调查表

  中奖金额

  500万

  投注人

  小李

  小王

  小张

  投注款(元)

  200

  140

  160

  应得奖金

  1、请你们帮他们算一算,每个人该分得多少钱?

  2、小李将实际得到的全部奖金160万元按照1:3的比将钱捐给了希望工程和自己留作教育基金,请问小李捐给希望工程多少钱?

  师课件演示先出示第1问,生算完后,将答案点击到括号内。

  师读第2个问题时生议论,师问:”怎么有问题吗?”

  生:小李应该分200万元,怎么你说小李将实际得到的全部奖金为160万元,你算错了吧?

  师:我再看看,没有。

  生:那两个人少给他了吧!

  师:也没有,到底怎么回事?因为中奖后交纳20%的个人所得税,所以小李实际得到了160万元,大家一定要记住,依法诚信纳税是每个公民的义务,接着算吧。

  师:请做完的同学报告你的名次。

  算完后出示一个大募捐箱。

  师:同学们,看来呀,我们生活中处处有数学,如果我们经常用数学的眼光来观察周围的事物,那么我们的数学本领一定会越来越高,老师留一个作业,

  作业:在普九达标活动中,教育局拨给南关小学2000本图书,学校决定把这批图书按照人数的多少分发给各班用于置办图书角,每班应该分多少本书呢?,请你展开调查,并且将你的分配方案写成书面材料交给李校长。

比的应用 篇11

  【教材分析】

  《比的应用》小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、 “比例尺”的知识奠定基础。

  教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

  【学生分析】

  学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

  比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

  【教学目标】

  1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

  让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

  3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

  【教具准备】

  课前准备:学生查找有关事物各组成部分比的资料。

  课上准备:小红旗。

  【教学重点】理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

  【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。

  【教学过程】

  一.情境引入

  老师有140个橘子,要分给幼儿园两个班的小朋友,你觉得怎样分才算合理呢?(平均分,这样才公平。)

  经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?(不合理,因为每个人分到的就不一样多了。)

  怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。(按人数比30 :20 = 3 :2进行分配。)

  3、3 :2表示什么意思?

  [设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。

  二、问题解决活动1:合作研究怎样按3 :2 这个“比”来分配

  为了研究方便,老师给大家提供了一些小旗代替橘子。

  (一)合作研究

  1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)

  大班 小班

  第一次

  第二次

  第三次

  第四次

  第五次

  大班分得面小旗

  小班分得面小旗

  2.学生合作研究

  3.教师组织反馈交流

  老师在巡视的过程中,收集约三种不同的分法,分步展示在黑板上。

  四人一组交流讨论要求

  (1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?

  (2)观察、比较这几种分法,你能发现什么?

  插问:你觉得分一次至少需要多少面小旗?为什么?

  也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?

  学生可能出现的方法预设:

  分法1:每次分给大班3面,分给小班2面。

  表扬:认真有耐心,十二次。

  分法2:根据比的基本性质分,分的次数明显减少。

  表扬:很会动脑筋,在分的过程中及时进行了调整。

  分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。

  表扬:很会联系实际情况,这种分法在实际生活中非常实用。

  [设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力

  (二)验证

  1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?

  大班 小班

  分得小旗的总面数

  人数

  平均每人分到小旗的面数

  30 :20 = 3 :2 = 36 :24

  2.师生一起小结:

  (1)平均每人分到的小旗同样多吗?

  (2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?

  (3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?

  [设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。

  (三)当我们知道总数的情况下的按比分配

  1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?

  2.四人一组交流,说说你想到的方法:

  方法1:按比逐次分配。

  方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小旗。

  方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数

  3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?

  三、巩固练习

  同学们表现得太出色了,能再帮老师一个忙好吗?好啊

  我家有一块近似长方形的菜地,面积大约是984平方米,我想按3:5的比例种茄子和西红柿,茄子和西红柿各种多少平方米?

  四、总结

  今天的学习,你有哪些收获和感受?

  1、通过这节课的学习你对比有了哪些新的认识?

  2、把一些事物按一定的比分的时候,可以用哪些策略?

  3、你在生活中还能找到比的应用的例子吗?

  <比的应用>教学设计 来自第一范文网。

比的应用 篇12

  教学片段:

  师:同学们,昨天老师要求大家调查生活中哪些地方应用到比的知识,请给大家讲一讲,另外还要说一说你每是怎样获得这些知识的(生汇报,师适当摘录,板书)

  生甲:冲调多美滋配方奶粉的一般情况,奶粉和水的比为1:7。

  生乙:‘地球上的淡水含量与地球上水总量的比为3:100。

  生丙:安利洗涤剂与水的正常比为1:8。

  生丁:市场上出售的一种咖啡奶,咖啡和奶的比为2:9。

  师:同学们从咖啡奶的这个比中,你可以知道哪些知识呢?独立思考一下,看谁得到的知识多。

  教学反思:

  "比的应用"一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,因此,课前让每一个学生到生活中调查生活中的比,并且说一说你是怎么获得这些比的。以此引人新课,使学生感受到按比例分配的计算就来源于自己的生活实际。通过从生活实际引人按比例分配的计算,并应用所学知识解决了一些简单的实际问题,使学生真切地感受到数学知识和生活实际的紧密联系,数学来源于生活,并能解决实际问题,充分体现了应用题教学的应用性。数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。

比的应用 篇13

  教学片段:

  师:同学们,昨天老师要求大家调查生活中哪些地方应用到比的知识,请给大家讲一讲,另外还要说一说你每是怎样获得这些知识的(生汇报,师适当摘录,板书)

  生甲:冲调多美滋配方奶粉的一般情况,奶粉和水的比为1:7。

  生乙:‘地球上的淡水含量与地球上水总量的比为3:100。

  生丙:安利洗涤剂与水的正常比为1:8。

  生丁:市场上出售的一种咖啡奶,咖啡和奶的比为2:9。

  师:同学们从咖啡奶的这个比中,你可以知道哪些知识呢?独立思考一下,看谁得到的知识多。

  教学反思:

  "比的应用"一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,因此,课前让每一个学生到生活中调查生活中的比,并且说一说你是怎么获得这些比的。以此引人新课,使学生感受到按比例分配的计算就来源于自己的生活实际。通过从生活实际引人按比例分配的计算,并应用所学知识解决了一些简单的实际问题,使学生真切地感受到数学知识和生活实际的紧密联系,数学来源于生活,并能解决实际问题,充分体现了应用题教学的应用性。数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。

比的应用 篇14

  教学片段:

  师:同学们,昨天老师要求大家调查生活中哪些地方应用到比的知识,请给大家讲一讲,另外还要说一说你每是怎样获得这些知识的(生汇报,师适当摘录,板书)

  生甲:冲调多美滋配方奶粉的一般情况,奶粉和水的比为1:7。

  生乙:‘地球上的淡水含量与地球上水总量的比为3:100。

  生丙:安利洗涤剂与水的正常比为1:8。

  生丁:市场上出售的一种咖啡奶,咖啡和奶的比为2:9。

  师:同学们从咖啡奶的这个比中,你可以知道哪些知识呢?独立思考一下,看谁得到的知识多。

  教学反思:

  "比的应用"一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,因此,课前让每一个学生到生活中调查生活中的比,并且说一说你是怎么获得这些比的。以此引人新课,使学生感受到按比例分配的计算就来源于自己的生活实际。通过从生活实际引人按比例分配的计算,并应用所学知识解决了一些简单的实际问题,使学生真切地感受到数学知识和生活实际的紧密联系,数学来源于生活,并能解决实际问题,充分体现了应用题教学的应用性。数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。

比的应用 篇15

  教案内容:北师大版课程标准实验教材六(上)p55—p56。

  设计理念:

  《数学新课程标准》指出:义务教育阶段的数学课程其基本出发点是促进学生全面、持续、和谐地发展。为此,本课从学生地生活经验出发,把陌生枯燥地应用题与学生地熟悉地生活背景联系起来。通过“问题情景”——“建立模型”——“解释应用与拓展”,这三个阶段让学生亲身经历数学建构地过程,体验策略地多样化,初步形成评价与反思意识,从而提高解决问题地能力。

  教学目标:

  知识教学点:

  1、理解按一定比来分配一个数的意义。

  2、掌握按比例分配应用题的特征和方法。

  能力训练点:

  1、发展学生的思维能力,培养学生利用所学知识解决实际问题的能力。

  2、培养学生的语言表达能力和归纳能力。

  3、培养学生合作学习的能力,分析能力,概括能力。

  德育渗透点:培养学生的数学兴趣,养成良好的思维品质、团结协作和开拓创新的精神。

  教学重点、难点:

  1、理解按一定比来分配一个数量的意义。

  2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。

  教材分析:

  这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。

  学情分析:

  对于按比分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

  教学过程:

  一、课前组织复习旧知

  同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

  学生自由发言,预设推断如下:

  1、全班人数是9份,男生占其中的5份,女生占其中的4份。

  2、以全班为单位“1”,男生是全班的,女生是全班的。

  3、以男生为单位“1”,女生是男生的,全班是男生的。

  4、以女生为单位“1”,男生是女生的,全班是女生的。

  5、女生比男生少(或20%)。

  6、男生比女生多(或25%)。

  追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

  二、创设情境,导入新知

  看来大家对比的认识还是相当清楚的。那接下来我们一起来看一幅图——(课件出示情境图)能猜得出阿姨要大家帮什么忙吗?

  1、把这些橘子分给大班和小班,你们说说看,都有哪些分法?

  预设同学可能发表的意见,根据回答板书:

  (1)平均分(若学生没提到,就以“我们以前不是学过‘平均分’吗?怎么没人提啊?”来引导分析)

  追问:平均分是怎么分?明确就是每班分一半。

  (2)一人一个

  (3)按大班和小班人数的比来分(或说,把橘子总个数除以学生总数,看看每人

  能得多少个,再分。)

  追问:按人数比来分,那你能说出,大班和小班的人数比是多少吗?(3:2),怎

  么分才是按3:2来分,你可以给大家介绍一下吗?其他同学也可以补充。

  2、追问:还有其他分法吗?那么,在这么多种分法当中,你觉得哪种分法更合理

  呢?(请两个学生互相补充,恩,这是你的道理,谁也来说说看?)

  3、说明:刚才那两位同学分析得都对,因为两个班人数不一样,所以平均分看似公平其实不公平。而按两班人数比3:2,把橘子也按3:2来分,肯定比较公平合理。

  【设计意图:提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。】

  三、合作探究,解决问题

  师:既然这样,如果我现在就给你140个橘子按3:2来分,你能求出大班和小班各可以分到多少个橘子吗?请把你的方法写下来。(课件背景图不变,演示教师话语)

  1、师巡视辅导:写好的,可以和你组内的成员交流一下你的想法,有不同的方法都可以写下来。

  2、请不同做法的学生上台板演,交流汇报(请板演的学生):“你先介绍一下你

  是怎么想的吧。”等学生汇报后,问:“这个结果,大家同意吗?”再请其他同学复述:“还有谁也是这种做法的,你也来说说。”

  方法一:实际操作,画表格。

  大班小班

  30个20个

  30个20个

  …………

  方法二:画图,把大班画成3份,小班画成2份,这样一共是5份,

  可以先求出一份是多少,再分别求出大班和小班分得的橘子数。

  140个

  方法三:列式,先想到5份,然后根据分数的意义求出结果。

  3+2=5

  140×=84(个)

  140×=56(个)

  追问:为什么要“×”?你能不能告诉大家表示什么?(引导明确:因为大班

  人数占总人数的,所以它分到的橘子个数应该也要占橘子总数的。)

  方法四:根据比的意义,

  140÷(3+2)=28

  大班:28×3=84(个)

  小班:28×2=56(个)

  追问:为什么要“÷(3+2)”?

  答:大班分84个,小班分56个,比较合理。

  3、引导小结:好,还有其他做法吗?这些方法都可以,但在这么

  多方法中,你比较喜欢哪种呢?我个人觉得这两种方法各有千秋,都不错,建议大家都掌握。(以方法3、4为例讲解)这种方法是根据比与分数的关系,看看每种物体各占总数的几分之几,再用分数的知识来解答;这种方法是根据比的意义,看看一共分成几份,先平均分求出每份的具体数量,再各取所需,乘各自分得的份数。

  【设计意图:这个环节将学生自主探索的结果进行梳理。学生把各种各样的方法汇报完后,让学生说一说自己是怎么想的。在这个过程中以学生为主体,充分倾听学生的意见,将学生已有的经验与这节课新的知识增长点有机的联系起来,使得学生能够比较轻松得掌握新解决问题的办法。】

  四、实践应用

  1、师:刚才我们共同探讨解决了这样一道“按比分”的问题,觉得有困难吗?有信心独自完成一道这样的题目吗?好,请大家自己读题分析完成,有几种方法都可以把它写下来。课件出示题目——

  “幼儿园阿姨要调制2200克巧克力奶,说明书上介绍了其中巧克力和奶的比是2:9,你能帮阿姨算算调制这些巧克力奶需要用多少克奶和多少克巧克力吗?”

  独立完成,师巡视辅导:“好,已经完成的举个手?谁愿意带着你的本子到台前来介绍你的方法?”

  学生上台展示汇报后,师:“他做得对吗?还有其他做法吗?你也来介绍一下。”

  2、师:非常棒,但一直做同类型的题目没意思。现在我把题型改一改,看看有谁大家被考倒。请看题,师读题:“幼儿园图书室有图书若干本,按3:2分给大班和小班后,大班小朋友分到了60本,你能帮小班小朋友算算他们能分到多少本吗?”怎么样,谁发现了它和前面题目不一样的地方?能解决吗?好,你能想到几种解题方法,都请你写出来。

  师巡视辅导:有句俗话说“三个臭皮匠,抵个诸葛亮”,已经写好的同学不妨把你的做法在小组里和其他同学交流一下,通过思维碰撞,说不定你能得到更多灵感哦。先请一个小组的同学上来把你们的解法写出来。预设方法如下:

  (1)60÷3×2=40(本)

  说明:把大班人数看作3份,看看一份是多少,然后小班是这样的2份,再乘2。

  (2)60÷×=40(本)

  说明:把两班总人数看作单位“1”,大班是单位“1”的,先对应除求出单位“1”,然后小班是单位“1”的,再把单位“1”乘求出小班。

  (3)60×=40(本)

  说明:把大班人数看作单位“1”,小班人数是它的,就把单位“1”乘就可以了。

  (4)60÷=40(本)

  说明:把小班人数看作单位“1”,小班人数是它的,就把单位“1”除以就可以了。

  (5)利用方程解

  集体讲评,请板演的学生在台前说清过程:“先别急着下去,请你给大家介绍一下你的想法吧。”

  问:还有其他解法吗?好,你说我写,你再介绍一下。

  小结:解决生活中的实际问题时,同学们只要认真分析数量关系,就可以找出多种解题方法。看,我们集体的力量就是这么强大,一人只要说一种,就凑成了这么多种解题方法。其实,就算是“嫦娥奔月”那么伟大的事,都是集体智慧的结晶。所以说,只要继续发扬这种“团结协作、开拓创新”的精神,我们六年5班也一定会是最棒的。

  【设计意图:前后呼应情境,使学生的思维始终处在一个情境中,容易将前后的知识衔接起来。以上两个练习的设计将新学的知识进行拓展,层层深入,学生学习兴致更浓。渗透民族精神教育,养成良好的思维品质、团结协作和开拓创新的精神。】

  五、拓展延伸

  师:在我们身边,关于团结互助的例子处处可见。比如(出示课件“献血屋”,播放“让世界充满爱”的背景音乐)“献血屋”,是提供给大家无偿献血用的。我国延续几千年的民族精神中,一直都倡导“兴仁义之师,行仁义之事”。而无偿献血,救助生命就是“行仁义之事”,它体现了我们社会主义社会团结互助、人道友爱和无私奉献的精神。但是因为个人体质的不同,有的人血液浓度过高,她就需要在献血前可以喝一些盐水来稀释血液。一般情况下,1克的盐要搭配20克的水。问题是,“如果我现在要配制一杯210克的盐水,你能告诉我需要盐和水各多少克吗?”好,请你用心搭配。

  独立完成,请学生口头说,教师板演,并说清“比”是怎么得来的。

  (引导明确:实际上“1克盐要搭配20克的水”就隐藏了盐和水的比是“1:2”)

  小结:很多时候,题目里并不会明明白白告诉你“比是多少”,需要我们用慧眼去判断分析,找出它们是按什么比来分,再找出它们之间的比来进行计算。非常感谢大家的精心搭配,不过对于你们而言,无偿献血还为时过早,但你们可以为社会的公益事业、为希望工程做些什么呢?(自由回答)我们国家虽大,但向来都认为“四海之内皆兄弟,一方有难八方支援”,所以我们只要尽己所能,积少成多,也可以为希望工程作一份贡献。

  2、如果现在有零花钱45元,具体用途如下表(课件出示图表,持续播放“让世界充满爱”背景音乐),将这45元按一定的比来分配,你会怎样安排这45元零花钱呢?先请你们在小组里制定出它们之间的比,然后计算。

  学习用品爱心储蓄其他用途

  ::

  元元元

  请个别小组上台展示、汇报。

  【设计意图:通过两个练习的设计进行民族精神的德育渗透,将知识进行拓展延伸,与生活实际联系,提高学生的学习兴趣,对学生具有一定的挑战性。】

  六、评价总结,促进发展

  师:这节课我们利用比的知识解决了许多问题,实际上,这就是我们今天要学的“比的应用”——课件揭示课题。请大家翻开书本第55页,再好好看看,书本上有哪些方法我们刚才没介绍过吗?是的,这些也是解决问题的方法,大家可以了解。但是跟我们刚才探讨的方法比较,哪种更方便啊?解决问题关键是讲究实效,所以我们要选择最佳方法。

  那么学习了“比的应用”,你有什么想法吗?(自由发言)比在我们生活中的应用非常广泛,比如在建筑业、农业、医药等方面都需要非常精确应用比的知识,所以同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

  • 推荐阅读:
  • 比的应用(精选15篇)
  • 比的应用(新人教十一册)
  • 比的应用
  • 比的应用
  • 比的应用
  • 比和比的应用(通用6篇)
  • 比的应用教学设计
  • 比的应用教学反思
  • 比的应用教案

文章评论

    共有条评论来说两句吧...

    用户名:

    验证码: