您现在的位置是:首页 > 心得体会

六年级数学下册教案优秀 六年级数学下册第二单元思维导图

2024-02-21人围观
简介六年级数学下册教案优秀 篇1  新人教版六年级下册数学第二单元百分数(二)《折扣》教案设计  教学目标:  1.让学生感受数学与生活的联系。  2、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。  3.明确折扣的含义,能熟练地把折扣写成分数、百分数。正确解答有关折扣的实际问题。  教学重点:  会解答有关折扣的实际问题。  教学难点:  合理、灵活地选择方法,解答有关折扣的实际问题

六年级数学下册教案优秀 篇1

  新人教版六年级下册数学第二单元百分数(二)《折扣》教案设计

  教学目标:

  1.让学生感受数学与生活的联系。

  2、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

  3.明确折扣的含义,能熟练地把折扣写成分数、百分数。正确解答有关折扣的实际问题。

  教学重点:

  会解答有关折扣的实际问题。

  教学难点:

  合理、灵活地选择方法,解答有关折扣的实际问题。

  教学准备:课件、计算器

  一、导入新课:

  圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)

  二、在生活情境中,讲授新知:

  1.教学折扣的含义,会把折扣改写成百分数。

  刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

  你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)

  ①大衣,原价:1000元,现价:700元。

  ②围巾,原价:100元,现价:70元。

  ③铅笔盒,原价:10元,现价:?

  ④橡皮,原价:1元,现价:?

  动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

  仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

  讨论,找规律:

  A、学生动手操作、计算,并在计算或讨论中发现规律。

  B、学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。

  归纳,得定义:

  A、通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?

  B、概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?( “几折”是就是十分之几,也就是百分之几十)

  练习:

  ①四折是十分之( ),改写成百分数是( )。

  ②六折是十分之( ),改写成百分数是( )。

  ③七五折是十分之( ),改写成百分数是( )。

  ④九二折是十分之( ),改写成百分数是( )。

  2.运用折扣含义解决实际问题。

  例1:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

  (1)指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

  (2)学生试做,讲评。

  3、巩固练习:

  (1)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

  A、打九折怎么理解?是以谁为单位“1”?

  B、学生试做,讲评。

  (2)判断:

  ① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )

  ② 一件上衣现在打八折出售,就是说比原价降低10%。( )

  (3)完成课本中P8“做一做”练习题。

六年级数学下册教案优秀 篇2

  教学目标:

  1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3、使学生体验数学和生活的'密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:

  初步认识正数和负数以及读法和写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教学具准备:

  多媒体课件、温度计、练习纸、卡片等。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)

  ②向前走200米(向后走200米)

  ③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。

  ②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。

  ④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

六年级数学下册教案优秀 篇3

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙问题导入

  师:同学们,上节课我们复习了平面图形的特征,到目前为止,我们学习了哪些平面图形?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形。

  生2:我们还学过圆和圆环。

  (学生边说教师边把相应的图形贴在黑板上)

  师:什么是平面图形的周长和面积呢?我们今天就一起来复习关于平面图形的周长和面积的相关知识。(板书课题:平面图形的周长和面积)

  ⊙回顾与整理

  1.周长和面积的意义。

  师:什么是平面图形的周长?什么是平面图形的面积?

  预设

  生1:围成一个图形的所有边长的总和叫做这个图形的周长。

  生2:物体的表面或封闭图形的大小叫做面积。

  2.周长和面积的计算公式。

  (1)我们学过哪些图形的周长和面积的计算公式?

  长方形、正方形、平行四边形、三角形、梯形、圆的周长和面积的计算公式。

  结合学生的回答,有序地画出相关的平面图形,为构建知识网络做准备。

  (2)如何计算这些平面图形的周长和面积?各个面积公式之间有什么联系?

  ①长方形的周长=(长+宽)×2,用字母表示为C=2(a+b)。

  ②长方形的面积=长×宽,用字母表示为S=ab。

  ③正方形是特殊的长方形,正方形的周长=边长×4,用字母表示为C=4a;面积=边长×边长,用字母表示为S=a

六年级数学下册教案优秀 篇4

  一、基本情况

  六年级一班现有69人,其中男生33人,女生36人。从整体上来看,本班学生的学习习惯良好,能按时完成作业,上课能积极思考问题。对数学学科有较浓厚的学习兴趣,数学基本功扎实,有一定的分析问题,解决问题的能力。上学期期末统考均分87分,及格率100%,优分率96%。其中学习比较突出的有16人,处于中间水平的有41人,中下水平的有12人。这7名学生主要表现在接受能力差,学习不够积极主动。

  二、教材分析

  1、教学内容

  这一册教材包括下面一些内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。圆柱与圆锥、比例和整理和复习是本册教材的重点教学内容。

  2、教学目标

  ①了解负数的意义,会用负数表示一些日常生活中的问题。

  ②理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,会用比例知识解决比较简单的实际问题;能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估计另一个量的值。

  ③会看比例尺,能利用方格纸等形式按一定的比例将简单图形放大或缩小。

  ④认识圆柱、圆锥的特征,会计算圆柱的表面积和圆柱、圆锥的体积。

  ⑤能从统计图表准确提取统计信息,正确解释统计结果,并能作出正确的判断或简单的预测;初步体会数据可能产生误导。

  ⑥经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  ⑦经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。

  ⑧通过系统的整理和复习,加深对小学阶段所学的数学知识的理解和掌握,形成比较合理的、灵活的计算能力,发展思维能力和空间观念,提高综合运用所学数学知识解决问题的能力。

  ⑨体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  ⑩养成认真作业、书写整洁的良好习惯。

  3、教学重点

  ①在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

  ②认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

  ③探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

  ④理解比例的意义和基本性质,会解比例。理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

  ⑤认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

  ⑥了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

  ⑦会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

  ⑧经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  ⑨对小学阶段所学知识进行系统的复习。

六年级数学下册教案优秀 篇5

  教学内容:

  人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

  教学目标:

  1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

  2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

  3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

  教学重、难点:

  负数的意义。

  教学过程:

  一、谈话交流

  谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

  二、教学新知

  1.表示相反意义的量。

  (1)引入实例。

  谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

  ① 六年级上学期转来6人,本学期转走6人。

  ② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

  ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

  ④ 一个蓄水池夏季水位上升米,冬季水位下降米。

  指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

  (2)尝试。

  怎样用数学方式来表示这些相反意义的量呢?

  请同学们选择一例,试着写出表示方法。

  ……

  (3)展示交流。

  ……

  2.认识正、负数。

  (1)引入正、负数。

  谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

  介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

  “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

  像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

  (2)试一试。

  请你用正、负数来表示出其它几组相反意义的量。

  写完后,交流、检查。

  3.联系实际,加深认识。

  (1)说一说存折上的数各表示什么?(教学例2。)

  (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

  ① 同桌交流。

  ② 全班交流。根据学生发言板书。

  这样的正、负数能写完吗?(板书:… …)

  强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

  4.进一步认识“0”。

  (1)看一看、读一读。

  谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

  哈尔滨: -15 ℃~-3 ℃

  北京: -5 ℃~5 ℃

  深圳: 12 ℃~23 ℃

  温度中有正数也有负数,请把负数读出来。

  (2)找一找、说一说。

  我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

  你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

  现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

  说一说,你怎么这么快就找到了?

  (课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃吗?

  (3)提升认识。

  请学生观察温度计,说一说有什么发现?

  在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

  “0”是正数,还是负数呢?

  在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

  (4)总结归纳。

  如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

  (完善板书。)

  5.练一练。

  读一读,填一填。(练习一第1题。)

  6.出示课题。

  同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

  根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

  7.负数的历史。

  (1)介绍。

  其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):

六年级数学下册教案优秀 篇6

  教学目标

  1、知识与技能:使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。

  2、过程与方法:经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。

  3、情感态度与价值观:通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。

  教学重难点

  重点:理解反比例的意义、正反比例的比较。

  难点:正确判断两个量是否成反比例

  教学工具

  PPT课件

  教学过程

  (一)、回忆旧知,引出新课。

  1、复述回顾:

  (1)、什么叫做成正比例的量?

  (2)判定两种量成正比例的关键是什么?

  (3)、判定下面两种量是否成正比例?

  A、轮船行驶的速度一定,行驶的路程和时间。

  B、每小时织布的米数一定,织布总米数和时间。

  C、当圆柱体的高度一定时,体积和底面积。

  2、引出课题:这是我们上节课学习的内容——成正比例的量,今天我们继续学习这些常用的数量关系之间的一些特征。当圆柱体的体积一定时,底面积和高度又有什么态度呢?﹙板书:成反比例的量﹚

  (二)、自主学习,探索新知。

  1、探究反比例的意义

  今天老师给大家带来了一个实验,在实验之前,提出实验要求。

  (1)、记录杯子里水的.高度,把表格中补充完整。

  (2)、观察水的高度是如何变化的?

  教师播放实验。

  水的高度是怎样随着底面积的变化而变化的?

  3、观看实验记录单,回答三个问题。

  ①表格中有哪两种量?

  ②水的高度是怎样随着底面积的变化而变化的?

  ③相对应的杯子的底面积和水的高度的乘积分别是多少?

  教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。

  4、课件展示反比例的意义,请学生回答判断两种量成反比例的关键是什么?

  学生小组内讨论得出判断两种量成反比例的关键是有三个条件,1、两种相关联的量;2、变化方向相反;3、乘积一定。

  3、说一说:生活中还有哪些量成反比例关系?

  师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。

  (1)学生自由举例。

  (2)师讲述:日常生活和生产中有很多相关联的量,有的成反比例,有的相关联,但不成比例。判断两种相关联的量是否成反比例,要看这两个量的积是否一定,只有积一定,这两个量才成反比例

  三、巩固练习。

  (一)、基础练习

  1、判断下面每题中的两种量是不是成正比例,并说明理由。

  (1)轮船行驶的速度一定,行驶的路程和时间。

  (2)每小时织布的米数一定,织布总米数和时间。

  (3)当圆柱体的高度一定时,体积和底面积。

  (1)、表格中有和两种相关联的量。

  (2)、写出这两种量中相对应的两个数的积,并比较大小。

  (3)、这个积表示。

  (4)、表中的相关联的两种量成反比例吗?为什么?

  2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。

  (1)煤的量一定,每天的烧煤量和能够烧的天数。

  (2)种子的总量一定,每公顷的播种量和播种的公顷数。

  (3)李叔叔从家到工厂,骑自行车的速度和所需的时间。

  (4)华容做12道数学题,做完的题和没有做的题。

  四、积极应用,拓展新知。

  出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。

  学生小组内讨论,得出答案。

  五、拓展练习。

  1、判断下面每题中的两种量成比例吗?并说明理由。

  (1)、长方形的面积一定,它的长和宽。

  (2)、轮船行驶的速度一定,行驶的路程和时间。

  (3)、生产电视机的总台数一定,每天生产的台数和所用的天数。

  (4)、小麦每公顷的产量一定,小麦的公顷数和总产量。

  (5)、矿泉水瓶中喝掉的水和剩下的水。

  (6)、圆的半径和它的面积。

  (7)、铺地面积一定,方砖面积与所需块数。

  六、课堂小结。

  通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。

六年级数学下册教案优秀 篇7

  1.在具体情境中进一步理解“增加百分之几”或“减少百分之几”的意义,能计算出实际问题中“比一个数增加百分之几的数”或“比一个数减少百分之几的数”,提高运用数学解决实际问题的能力。

  2.能对现实生活中的有关数学信息作出合理的解释,并尝试解决生活中的一些简单的百分数问题;能试图探索出解答一般百分数应用题的方法,初步学会与他人合作。

  3.体验百分数与日常生活的密切联系,认识到许多实际中的问题可以借助数学方法来解决。提高学生学习数学的兴趣,发展学生质疑的能力,感悟数学知识的魅力。

  教学重点:

  理解“增加百分之几”和“减少百分之几”的意义。

  教学难点:

  掌握百分数应用题的特征及解答方法。

  教学过程:

  一、导入

  师:同学们,随着科学技术的发展,社会生产力不断进步,我国从1997年至今。铁路已经进行了多次大规模的提速,高速列车已经步入了人们的生活。今天我们一起来研究与列车提速有关的问题。

  【设计意图:从时事中提取数学信息,引导学生读活书、用活书,培养关注时事的`兴趣。】

  二、过程

  师:说说从图中你了解到哪些信息?还想知道什么问题?(课件出示:教材第90页情境图)

  生:从图中知道,原来的列车每时行驶180千米,现在高速列车的速度比原来的列车提高了50%。我想知道,现在的高速列车每时行驶多少千米?

  师:“现在的高速列车每时行驶多少千米”,你是如何思考这个问题的?

  生1:现在高速列车的速度比原来的列车快多了。

  生2:我们首先要明白“现在高速列车的速度比原来的列车提高了50%”这句话的意思。

  师:你是怎样理解这句话的?

  生:我们可以画图表示现在的速度和原来的速度之间的关系,这样能帮助我们理解题意。

  师:好,那就自己画图,试试看,能明白这句话的意思吗?

  学生尝试画图,教师巡视了解情况,个别指导有困难的学生。

  师:谁来说说自己的理解?

  生1:很容易从图中看出,“现在高速列车的速度比原来的列车提高了50%”,意思是指提高的部分相当于原来的50%,是把原来的速度看作单位“1”,这样我们就可以先计算速度提高了多少千米,也就是求一个数的百分之几是多少,用乘法计算;然后计算现在高速列车的速度。

  生2:从图中我们能看出,提高的部分是原来的50%,也就是说现在高速列车的速度是原来列车速度的(1+50%),这样就把问题转化成了“求一个数的百分之几是多少”的问题,用乘法计算。

  师:说的都对。请同学们自己列式解决问题吧!

  学生尝试独立列式解答,教师巡视了解情况。

  组织学生交流汇报,重点说说想法:

  先求比原来每时多行驶了多少千米,180×50%+180=270(千米)。

  先求现在的速度是原来的百分之几,180×(1+50%)=270(千米)。

  对于解答正确的学生及时给予表扬和鼓励。

  师:从下面的信息中,选择两个信息,然后提出一个问题,并试着解决。跟小组同学交流一下。(课件出示:教材第91页“试一试”中的4条信息)

  学生自己选择信息提出问题并解答,然后交流各自的方法;教师巡视了解情况。

  选取不同情况的学生代表汇报交流,只要有道理就要给予肯定。

  师:经过练习之后,淘气发现无论解决的是什么问题,都可以用下面的图来表示烘干前后的关系,你同意淘气的看法吗?为什么?(课件出示:教材第91页线段图)

  组织学生讨论交流,达成一致意见,明确:烘干前的质量多,烘干后的质量少。

  【设计意图:在具体问题的解决过程中,通过寻找数量关系,使学生进一步体会画线段图是一种非常常见的、有效的方法。】

  三、总结

  让学生说说本节课的收获。

  【设计意图:调动学生的积极性,提高课堂的学习效率。】

  板书设计:

  先求原来每时多行驶了多少千米

  180×50%+180

  先求现在的速度是原来的百分之几

  180×(1+50%)

  教学反思:

  能够与实际生活联系在一起,使学生切身体会到数学在实际生活中的运用,更好的激发出学生对数学的学习兴趣。每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的理解。学生的这种不同理解,其实就是一种很好的课程资源。在新知教学过程中,学生在理解题意的基础上,先独立思考,后尝试解答,再合作研讨。提倡、发现学生的多种思维和不同解法。在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。

六年级数学下册教案优秀 篇8

  教学目标:

  1、知识目标使学生牢固地掌握数的整除有关概念,明确概念间的联系与区别。

  2、能力目标结合知识的学习培养学生分析、判断推理、概括、归纳等能力。

  3、情感目标使学生养成合作学习和勇于探索的良好品质。

  教学重点:

  明确概念间的联系与区别。

  教学难点:

  在整理中构建数的整除的知识网络。

  教学过程:

  一、结合情境,搜集概念。

  师:今天一共有多少位同学来这里和老师一起学习?

  生:40位同学。

  师:40位同学又分5个学习小组,哪位同学能用数的整除的知识说说40与5的关系?

  生:40能被5整除。

  生:5是40的约数。

  生:40和5的最小公位数是40,最大公约数是5。

  师:刚才大家说的很好,说到了整除、倍数、最小公倍数、最大公约数,同学们再想一想,在数的整除里,除了这几个概念外,我们还学习了哪些知识呢?

  生:整除能被2、3、5整除的特征,倍数、公倍数、最小公倍数、约数、公约数、最大公约数、质数、合数、质因数、分解质因数、变质数、奇数、偶数。

  二、叙述概念意义,梳理知识网络。

  (1)学生在小组内通过相叙述,质疑问难等方式回忆概念的意义。

  (2)学习复习完后各组互派代表相查概念的掌握情况,并向老师汇报抽查结果。

  2、梳理知识网络。

  (1)小组活动。

  师:从同学们反馈情况来看,各小组这些复习概念较好,但数的整除里知识之间存在什么联系和区别呢?请同学们动手整理一下。

  (2)对比交流。

  抽一小组在黑板上整理,然后各小组表示。

  师:通过展示,你们认为哪种观点有道理呢?

  各小组进行了充分的讨论后,都说出了道理。

  下面看到老师这里也有一个网络图。

  师:通过网络图更清楚地知道,在整除的前提下产生了一对概念倍数、约数、倍数下面又产生了公倍数,最小公倍数的'概念,约数下面又产生了公约数,最大公约数的概念;从分析自然数的个数又引入了质数合数的概念;能被2、3、5整除的数一定是2、3、5的倍数,从能被2整除的这个角度,出现了奇数偶数概念。公约数只有1的两个数叫互质数,所以互质数与公约数有联系。

  三、巩固应用,拓展提高

  在56□的□里填上一个数字,使它能被3整除,又能被2整除。

  2、填空。

  (1)在1~20中是偶数的有是奇数的有,是质数的有,合数的有

  (2)如果a、b两数互质,那么它们的最大公约数是最小公倍数是。

  如果a是b的倍数,那么它们的最大公约数是最小公倍数是。

  (3)18和24的最大公约数是,最小公倍数是。

  四、全课总结,交流收获。

  1、今天这节课我们复习了哪些概念?

  2、这节课你最感兴趣的是什么?

  五、布置作业。

六年级数学下册教案优秀 篇9

  教材分析

  现实世界中存在着许多具有相反方向的量,或某种量的增大和减小,也可用这种量的某一状态为标准,把它们看作是向两个方向变化的量。要确切地表示这种具有相反方向的量,仅仅运用原有数(自然数和分数)是不够的,还必须把这两个互为相反的方向表示出来,于是产生了正数和负数。数从表示数量的多少到不但表示数量的多少,还表示相反方向的量,是数的一个飞跃发展。正数和负数的学习过去安排在中学有理数中学习,本课教材所处的位置,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。通过负数的认识,使学生明白“数”不仅包括正的,还有负的,从而使学生对数的概念形成一个完善、系统的知识结构,为今后进一步的学习打下基础。所以说,本单元是在学生已经认识了自然数,并初步认识了分数、小数的基础上进行学习的,负数的引入是数系的一次扩展,为今后学习实数奠定了基础。通过学习,可以适当拓宽学生对数学的认识,并对学生进一步理解有理数的意义以及进行有理数的运算打下了基础。因此,本单元的内容具有承上启下的作用,要使学生切实地学好。

  学情分析

  负数切实存在于人们的生活中,尤其是在“天气预报”和存折上的“支出存入”情况中,学生在日常生活中的经验储备比较丰富,为本单元的学习奠定了基础。同时,学生已经认识了自然数、分数和小数,对于理解正、负数和0之间的关系做了准备。

  教学要求

  1、在熟悉的生活情境中经历认识负数的过程,了解负数的意义,会用负数表示一些日常生活中的问题。

  2、能对现实生活中有关负数的数学信息作出合理解释。

  3、能用负数描述并解决一些现实世界中的简单问题,能表达解决问题的过程,并尝试解释所得的结果。

  4、对现实生活中与负数有关的事物具有好奇心,感受负数与生活的密切联系,认识到生活中许多实际问题都可以借助负数来表达和交流。

  教学建议

  1、通过丰富多彩的生活情境,加深学生对负数的认识。要通过丰富多彩的生活实例,激发学习兴趣,感受负数存在的'必要性。通过两种相反意义的量的对比,初步建立负数概念。培养学生用数学眼光观察生活,感受数学在实际生活中的广泛应用。

  2、把握好教学要求。作为过渡,小学阶段只要求小学生初步认识负数,能在具体情境中理解负数,初步建立负数的概念。教学中,不出现正、负数的数学定义,而只是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正、负数。关于数轴的认识,没有出现严格的定义。

  课时安排

  1负数的初步认识及读、写1课时2用数轴表示正、负数1课时

  1、负数的初步认识及读、写

  第一课时

  教学内容

  负数的初步认识及读、写教材第2~4页。

  教学目标

  1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的必要和方便。知道正数和负数的读法和写法,知道0既不是正数,也不是负数。正数都大于0,负数都小于0.

  2、培养学生在实际生活中应用数学的能力。

  3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

  重点难点

  重点:初步理解负数的意义,认识负数。难点:理解0既不是正数,也不是负数。教具学具课件。

  教学过程

  师:同学们,我们首先一起来做一个小游戏,游戏的名字叫“截然相反”。要求

  根据老师的语言,说一句相反的话。有兴趣吗?

  师生开始做游戏,如“上——下”;“向前走2步——向后退2步”;“运进2吨——运出2吨”,等等。

  师:如果你是管理员,需要记录物品的进出情况,你能用自己喜欢的方式记录“运进2吨——运出2吨”吗?比比谁记录得既简洁又准确。

  学生可能出现的情况有:

  ?用符号“x”“?”或相反方向的箭头表示。?用笑脸和哭脸表示。?用正、负数表示。 ……

  只要学生选取的表示方法合理,能正确表示意义相反的量,教师就要给予肯定。如果学生答案出现正、负数表示的情况,可以借此直接引入新课:“同学们,这就是负数。今天我们就一起来认识负数。”如果学生的答案中没有出现正、负数情况,教师就要谈话引入新课。

  师:同学们,你们知道人们一般用什么方法简洁而准确地表示这样的具有相反意义的量吗?我们一起来看看生活中的例子。

  【设计意图:借助游戏热身,导入新课,既活跃了课堂气氛,拉近了教师和学生的距离,又与所学的负数有直接的联系,能迅速地把学生带入到“相反”的意义中,为负数的学习做好铺垫】

  1、教学例1.

  师:下面是中央气象台20__年1月21日下午发布的六个城市的气温预报,仔细观察并说说你发现了什么?(课件出示:教材第2页例1图)

  生:我发现同一时刻这些地方的气温是不同的。

  师:你知道这些数据表示什么吗?跟小组的同学交流一下。学生进行小组活动后,组织学生交流汇报。师:你发现了什么?

  生:零下的温度数字前面有“—”,零上的温度数字前面有的有“+”,有的没有。

  师:同学们发现“0℃”是一个特殊的温度,那么0℃表示什么意思呢?

六年级数学下册教案优秀 篇10

  一、教学内容

  抽屉原理。

  二、教学目标

  1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2.通过“抽屉原理”的灵活应用感受数学的魅力。

  三、具体编排

  1.例1及“做一做”。

  例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。

  教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

  “做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。

  2.例2及“做一做”。

  本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。

  教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。

  “做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。

  3.例3。

  例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。

  教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。

  四、教学建议

  1. 应让学生初步经历“数学证明”的过程。

  在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

  2. 应有意识地培养学生的“模型”思想。

  “抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。

  3. 要适当把握教学要求。

  “抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。

六年级数学下册教案优秀 篇11

  教学内容:

  教科书第64页例3,完成随后的练一练和练习十三第6~8两题

  教学目标:

  1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

  2、使学生在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重难点:理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

  教学准备:实物投影

  教学预设:

  一、复习导入

  1、谈话:我们学习了正比例的意义,会判断两个量是否成正比例。谁来说说,怎样判断两个量是否成正比例?

  学生说,教师结合板书:相关联----是否会变化-----两个量的变化是有联系的(一个变化,另一个随着同向变化)------变化时比值不变。

  y

  x =k

  二、探索新知

  1、出示例题3表格

  追问:那么表格中的这两个量是否成正比例?你是怎样想的?

  2、学生交流,说明理由。

  引导学生发现:表中的这两个量也是相关联的,这两个量也会变化,变化也有联系,但变化时,不是同向变化,而是相反变化,变化时,不是比值相等,而是两个量的积相等。

  如果学生发现不了上述规律,可引导学生写出几组相对应的数量和单价的乘积。

  3、根据上面发现的规律,进一步启发学生思考:这个乘积表示什么?上面的规律能不能用一个式子来表示?

  根据学生的回答,教师板书关系式:数量×单价 = 总价(一定)

  4、引导学生,像这样的两个量成什么关系?你也能起个名称吗?你是怎样想的?(引导学生从变化的方向或者从变化的结果来想到这两个量成反比例)

  5、回顾判断两个量是否成反比例的思考过程。

  (1)提问:谁能来说说怎样的两个量成反比例?

  (2)让学生阅读书本65页单价和数量成反比例的量的那段话。

  (3)请同学们用字母x、y、z来表示反比例的关系。

  三、巩固练习

  1、教学“试一试”

  (1)要求学生根据表中的已知条件先把表格填写完整。

  (2)根据表中的数据,依次讨论表格下面的三个问题,并仿照例3作适当的板书。

  (3)让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

  2、完成第65页的“练一练”。

  先让学生独立思考并作出判断,再要求学生完整地说明判断理由。

  3、做练习十三第6~8题。

  第6、7题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。让学生完整地说出判断两种量是否成反比例的思考过程。

  第8题

  (1)让学生根据左边表格中的要求收集数据,并回答问题(1)。

  (2)让学生根据右边表格中的要求收集数据,并回答问题(2)。

  填好表格后,组织学生讨论,明确:只有当两种相关联的量的积一定时,它们才能成反比例。

  四、成正、反比例量的判断方法的对比

  1、请同学观察黑板上表示正、反比例的关系的字母式子,引导学生发现:

  在有意义的前提下,如果已知的两个量的商一定,则这两个量成正比例;如果已知的两个量的积一定,则这两个量成反比例。

  五、课堂练习:

  补充习题相关练习

六年级数学下册教案优秀 篇12

  第四单元 统计

  教学目标

  1.会综合应用学过的统计知识,能从统计图中准确统计信息,能够解释统计结果。

  2.能根据统计图提供的信息,作出正确的判断或简单预测。

  学情分析

  学生已学过一些统计知识,教师可以组织学生选择一个全班感兴趣的问题展开讨论,让学生收集数据,用统计图表展示数据,并作出决策。

  重点、难点: 培养学生的统计意识;从统计图中获信息,并能作出决策。

  课时安排:2课时

  第一课时 统计(1)

  教学内容:教材第68页例1,练习十一第一题。

  教学目标:

  1.体会数据在现实生活中的作用。

  2.理解扇形统计图的特点,能从扇形统计图中获取有用的信息,并作出相关决策。

  3.理解统计图中各个数据的具体含义,培养学生仔细观察的习惯。

  教学重点、难点:从扇形统计图中获信息,并能正确决策和简单的预测。

  教学媒体:

  教师可以再准备课本以外的扇形统计图

  教学过程

  1.情境导入

  同学们,你们喜欢看电视吗?你们知道家里的电视是什么品牌的吗?

  今天我们就去彩电市场看看各种彩电的市场占有率吧!

  (出示教科书第68页例1的扇形统计图)

  二、探究交流、总结规律

  1.小组探讨、交流。

  根据这幅统计图,你们了解到哪些信息?A牌彩电是市场上最畅销的彩电吗?

  根据提出的问题,让学生在小组内交流、讨论。学生可能会产生两种不同的看法:一部分会认为A品牌最畅销,而另一部分则认为A品牌不是最畅销的。

  (学生谈出个人观点后,会出现一些争论,让学生在争论中做出判断.)

  2.引导释疑。

  在学生讨论交流的基础上,教师提问:请大家仔细观察,说说

  统计图里“其它”部分可能包含了哪些信息呢?

  可让学生分别说说"其它"的具体含义,从而明确

  “其它”里面可能含有比A牌更畅销的彩电产品。

  3.小结。

  这幅统计图提供的数据比较模糊,不够完整,我们无法得到有关彩电市场占有率的完整信息,所以从本统计图中不能得出A牌彩电最畅销的结论。

  引导学生认识到:

  在利用统计图作判断和决策时,一定要仔细观察,注意从统计图提供的数据信息出发,不要单凭直观感受轻易下结论。

  三、巩固练习

  1.完成教科书第69页练习十一1.

  2.补充习题

  四、总结概括

  1.学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?

  2.谈你的收获。

  (本课注意事项:1.根据统计图提供的信息做出正确的判断和决策;2.不要单凭直观感受轻易下结论。)

  第二课时 统计(2)

  教学内容:教材第68页例2,练习十一第2题。

  教学目标

  1.综合运用统计知识学会从折线统计图中准确提取统计信息,并作出正确的判断和简单的预测。

  3.理解折线统计图中各个数据的具体含义,培养学生仔细观察的习惯。

  教学重点、难点:从折线统计图中获信息,并能作出决策。

  教学过程

  一、引入:

  回忆折线统计图的特点。

  二、探究交流、总结规律

  1.小组探讨、交流。

  出示教科书第68页两幅折线统计图,

  提问:根据这两幅统计图,你们了解到哪些信息?

  根据提出的问题,让学生在小组内交流、讨论,谈感受。

  学生可能会谈到:

  A和B两人绘制的是同一个公司员工的月薪统计图,为什么看起来不一样呢?第一幅图看起来工资增长很快,第二幅图看起来工资增长较慢。

  2.引导释疑。

  在学生讨论交流的基础上,教师提问:

  请大家仔细观察,两幅图看起来虽然不同,但它们所描述的统计数据却是完全一致的,之所以两图不同,原因在于绘图时采用的单位不同:左图1格代表50元,右图2代表100元。

  3.小结。

  引导学生认识到:

  在利用统计图进行比较和判断时,一定要注意统一标准,才不致发生误会。

  三、巩固练习

  1.完成教科书第69页练习十一2.

  2.补充练习。

  四、总结概括

  1.学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?

  2.谈你的收获。

  (本课注意事项:从折线统计图中准确提取统计信息时,特别要注意标准是否统一,以免影响到正确的判断和预测。)

六年级数学下册教案优秀 篇13

  课前准备

  教师准备 PPT课件

  教学过程

  谈话导入

  同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。

  实践与操作

  1.明确提出活动要求。

  “有趣的平衡”活动由三部分组成。

  (1)制作实验用具。

  (2)探索规律,体验“杠杆原理”。

  (3)应用规律,体会反比例关系。

  2.小组合作,自主活动。(教师巡视,适当点拨)

  3.展示制作实验用具情况。

  4.汇报探索到的规律。

  观察实验二、实验三的操作过程,你有什么发现?

  预设

  生1:如果左右两个塑料袋放入同样多的棋子,只有把它们移动到与中点距离相同的位置才能保证平衡。

  生2:若满足“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,则竹竿一定平衡。

  生3:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。

  生4:在“左边所放棋子数×左边的刻度数”的`积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。

  5.活动小结。

  “左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的那个点就是杠杆的支点。

  典型例题解析

  你能利用杠杆原理算出左边物体的质量吗?

  分析 根据杠杆原理“左边物体的质量×左边物体与支点的距离=右边物体的质量×右边物体与支点的距离”进行解答。

  解答 500×5÷2=1250(g)

  探究活动

  1.课件出示探究内容。

  星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?

  2.小组讨论、分析、解答。

  3.交流、汇报。

  (答案不唯一)

  全课总结

  通过本节课的学习,你有什么收获?

  布置作业

  找一找生活中还有哪些地方应用了杠杆原理。

  板书设计

  有趣的平衡

  有趣的平衡:左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数。

  • 推荐阅读:
  • 六年级数学下册《圆柱的表面积》教案(通用15篇)
  • 六年级数学下册教学计划(精选2篇)
  • 北师大六年级数学下册教案(精选3篇)
  • 六年级数学下册第三单元《比例》练习(精选16篇)
  • 六年级数学下册 《负数》第一课时作业设计(精选15篇)
  • 六年级数学下册《认识负数》教学设计(精选17篇)
  • 六年级数学下册教案
  • 六年级数学上册教案
  • 六年级数学比的教案

文章评论

    共有条评论来说两句吧...

    用户名:

    验证码: