您现在的位置是:首页 > 心得体会

四则运算的意义和法则 四则运算的意义加法

2024-02-03人围观
简介四则运算的意义和法则 篇1  教学目标  1.归纳整理四则运算的意义.  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.  3.总结四则运算中的一些特殊情况.  4.总结验算方法.  教学重点  整理四则运算的意义及法则.  教学难点  对四则运算算理本质规律的认识和理解.  教学步骤  一、复习旧知识,归纳知识结构.  (一)四则运算的意义.【演示课件】  1.举

四则运算的意义和法则 篇1

  教学目标

  1.归纳整理四则运算的意义.

  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

  3.总结四则运算中的一些特殊情况.

  4.总结验算方法.

  教学重点

  整理四则运算的意义及法则.

  教学难点

  对四则运算算理本质规律的认识和理解.

  教学步骤

  一、复习旧知识,归纳知识结构.

  (一)四则运算的意义.【演示课件】

  1.举例说明四则运算的意义.

  根据下面算式,说一说它们表示的四则运算的意义.

  2+3 0.6-0.4 2×3 6÷2

  100-15 2×0.3 0.6÷0.2

  0.2+0.3 2×1.3

  2.观察图片.

  教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

  (加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

  3.你能用图示的形式表示出四则运算的意义之间的关系吗?

  (二)四则运算的法则.【继续演示课件】

  1.加法和减法的法则.

  (1)出示三道题,请分析错误原因并改正.

  错误分别是:数位没有对齐,小数点没有对齐,没有通分.

  (2)三条法则分别是怎样要求的?

  整数:相同数位对齐

  小数:小数点对齐

  分数:分母相同时才能直接相加减

  思考:三条法则的要求反映了一条什么样的共同的规律?

  (相同计数单位上的数才能相加或相减)

  2.乘法和除法的法则.

  (1)出示两道题:

  口述整数乘法和除法的计算法则.

  改编成小数乘除法计算:1.42×2.3 4.182÷1.23

  (要求:学生在整数计算的结果上确定小数点的位置)

  (2)教师提问.

  通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

  (小数乘除法都先按整数乘除法法则计算)

  有什么不同?

  (小数乘、除法还要在计算结果上确定小数点的位置.)

  (3)根据 ,说一说分数乘法和除法的法则.

  分数乘法和除法比较又有什么相似和不同?

  相似:分数除法要转化成分数乘法计算.

  不同:分数除法转化后乘的是除数的倒数.

  (三)练习.【继续演示课件】

  计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.03 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  (要先通分)

  (四)法则中的特殊情况.【继续演示课件】

  请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

  分类如下:

  第一组:a+0=a a-0=a a×0=00÷a=0

  第二组:a×1=a a÷1=a

  第三组:a-a=0 a÷a=1

  (五)验算.【继续演示课件】

  1.根据四则运算的关系,完成下面等式.

  2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

  3.练习:先说出下面各算式的意义,再计算,并进行验算.

  4325+379 47.5-7.65 18.4×75

  84× 587.1÷0.57 ÷

  二、全课小结.

  这节课我们对进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

  三、随堂练习.

  1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

  43×0.78= 0.43×7.8=

  33.54÷0.78= 3354÷0.43=

  2.在○里填上“>”“<”或“=”.

  ○ 12× ○12÷3×2

  ÷ ○ 12÷ ○12÷2×3

  3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

  四、布置作业.

  计算下面各题,并且验算.

  1624÷56 -

  × 4.5×5.02

  五、板书设计

四则运算的意义和法则 篇2

  教学目标

  1.归纳整理四则运算的意义.

  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

  3.总结四则运算中的一些特殊情况.

  4.总结验算方法.

  教学重点

  整理四则运算的意义及法则.

  教学难点

  对四则运算算理本质规律的认识和理解.

  教学步骤

  一、复习旧知识,归纳知识结构.

  (一)四则运算的意义.【演示课件】

  1.举例说明四则运算的意义.

  根据下面算式,说一说它们表示的四则运算的意义.

  2+3 0.6-0.4 2×3 6÷2

  100-15 2×0.3 0.6÷0.2

  0.2+0.3 2×1.3

  2.观察图片.

  教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

  (加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

  3.你能用图示的形式表示出四则运算的意义之间的关系吗?

  (二)四则运算的法则.【继续演示课件】

  1.加法和减法的法则.

  (1)出示三道题,请分析错误原因并改正.

  错误分别是:数位没有对齐,小数点没有对齐,没有通分.

  (2)三条法则分别是怎样要求的?

  整数:相同数位对齐

  小数:小数点对齐

  分数:分母相同时才能直接相加减

  思考:三条法则的要求反映了一条什么样的共同的规律?

  (相同计数单位上的数才能相加或相减)

  2.乘法和除法的法则.

  (1)出示两道题:

  口述整数乘法和除法的计算法则.

  改编成小数乘除法计算:1.42×2.3 4.182÷1.23

  (要求:学生在整数计算的结果上确定小数点的位置)

  (2)教师提问.

  通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

  (小数乘除法都先按整数乘除法法则计算)

  有什么不同?

  (小数乘、除法还要在计算结果上确定小数点的位置.)

  (3)根据 ,说一说分数乘法和除法的法则.

  分数乘法和除法比较又有什么相似和不同?

  相似:分数除法要转化成分数乘法计算.

  不同:分数除法转化后乘的是除数的倒数.

  (三)练习.【继续演示课件】

  计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.03 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  (要先通分)

  (四)法则中的特殊情况.【继续演示课件】

  请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

  分类如下:

  第一组:a+0=a a-0=a a×0=00÷a=0

  第二组:a×1=a a÷1=a

  第三组:a-a=0 a÷a=1

  (五)验算.【继续演示课件】

  1.根据四则运算的关系,完成下面等式.

  2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

  3.练习:先说出下面各算式的意义,再计算,并进行验算.

  4325+379 47.5-7.65 18.4×75

  84× 587.1÷0.57 ÷

  二、全课小结.

  这节课我们对进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

  三、随堂练习.

  1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

  43×0.78= 0.43×7.8=

  33.54÷0.78= 3354÷0.43=

  2.在○里填上“>”“<”或“=”.

  ○ 12× ○12÷3×2

  ÷ ○ 12÷ ○12÷2×3

  3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

  四、布置作业.

  计算下面各题,并且验算.

  1624÷56 -

  × 4.5×5.02

  五、板书设计

四则运算的意义和法则 篇3

  教学目标

  1.使学生理解、掌握四则运算的五大定律和两个性质。

  2.掌握积、商的变化规律。

  3.能运用这些定律、性质和规律进行简便计算,提高计算能力。

  教学重点:运用定律、性质和规律进行简算。

  教学难点:如何“灵活”运用。

  教具与学具准备

  投影仪、投影片、判断牌、选择牌。

  教学过程设计

  (一)揭示课题

  提问:“请同学们回忆一下,我们在学习整数四则运算时,已经学过了哪些运算定律?哪些运算性质?”(指名回答)

  (板书)

  加法交换律 减法的性质

  结合律

  乘法交换律 除法的性质

  结合律

  分配律

  很好,今天我们就来复习这些定律和性质及其应用。(板书:四则运算的定律和性质复习)

  (二)复习五大定律

  1.提问:这些定律用字母怎样表示?用语言怎么叙述?(学生边回答教师边板书字母公式。)

  2.判断下面应用运算定律的过程有没有错误,没错举“√”,有错举“×”,并指出错误所在,改正过来。

  投影出示:

  (1)(43+25)×4=43×4×25×4

  (2)(700+1)×68=700×68+68

  (3)153×(220+57)=153×220+57

  (4)45+(54+55)=54+(45+55)

  (5)63×8+37×8=(63+37)×(8+8)

  3.小结:我们运用这些定律时要注意正确。

  (三)复习两大性质

  1.提问:我们还学习了哪些运算性质?你能把它们用字母表示出来吗?说说它们表示的意思。(学生边说老师边板书。)

  减法运算性质:a-(b+c)=a-b-c

  除法运算性质:(a+b)÷c=a÷c+b÷c(c≠0)

  强调除法性质中的a,b都要能被c整除,且除数c不能是0。

  2.做一做:在等号后面的横线上填数,○里填运算符号。

  (1)157-(27+68)=157-27○____

  (2)3214-537-463=3214-(537○463)

  (3)(945+63)÷9=945÷____○63÷____

  (4)156×102=156×(100○____)

  指名一人做胶片,其他同学做印好的练习片子,然后投影说结果,并说明根据什么性质。

  (四)积、商的变化规律

  1.提问:我们在学习多位数乘、除法时,还学过积、商的哪些变化规律?谁还记得?

  (1)投影:在乘法里,如果一个因数扩大10倍,另一个因数不变,那么积就____倍;如果一个因数缩小100倍,另一个因数不变,那么积就____倍;或者,一个因数扩大10倍,另一个因数缩小10倍,积____。

  想一想:这是什么道理?(是乘法交换律和结合律的具体体现。)

  投影说明:

  (a×10)×b=a×10×b=a×b×10=(a×b)×10

  (a÷100)×b=a÷100×b=a×b÷100=(a×b)÷100

  (a×10)×(b÷10)=a×10×b÷10

  =a×b×10÷10=(a×b)×1=a×b

  (2)投影回答:在除法里,被除数和除数____扩大(或缩小)____的倍数,____。

  问:你能联系乘、除法的关系和乘法运算定律来说明其中的道理吗?(根据除法是乘法的逆运算关系,这也是乘法运算定律的具体体现。)

  说明:整数四则运算的定律和性质,对小数四则运算同样适用。(只有除法的性质略有变化,a,b都要能被c除尽。)

  2.练习。

  口答:

  (1)一个因数扩大100倍,另一个因数扩大10倍,原来的积就____倍。

  (2)把除数扩大100倍,要使商不变,被除数应该____倍。

  (3)在下面的横线上填上适当的数,○里填运算符号。

  ①3.6+0.85+6.4+0.15=(____○____)○(____○____)

  ②4.53-1.64-0.36=____○(____○0.36)

  ③7.8×5.3+7.8×4.7=____○(____○____)

  ④4.2÷0.7+2.8÷0.7=(____○____)○____

  (五)课堂总结

  我们掌握四则运算的五大定律和两个性质主要是为了应用,使计算简便,而且要灵活运用。

  (六)课堂练习

  1.选择题:(投影出示,学生举选择牌。)

  (1)被减数不变,减数增加5,得到的差( )。

  ①增加5②减少5③不变

  (2)对于25×48,小明想了以下几种计算方法,分别应用了( )知识。

  25×48=25×(40+8)=25×40+25×8=1000+200=1200

  应用了( )知识。

  25×48=25×(6×8)=6×(25×8)=6×200=1200

  应用了( )知识。

  25×48=25×(50-2)=25×50-25×2=1250-50=1200

  应用了( )知识。

  25×48=(25×4)×(48÷4)=100×12=1200

  应用了( )知识。

  ①积的变化规律②乘法交换律和结合律③乘法结合律④乘法分配律⑤乘法交换律

  追问:哪种最简便?

  2.简算,在片子上完成,指名两个同学用胶片做。

  ①1.25×2.5×64×5

  =1.25×2.5×(8×8)×5

  =(1.25×8)×(2.5×8×5)

  =10×100=1000

  ②5.8÷0.7+0.42÷0.07+40÷7

  =58÷7+42÷7+40÷7

  =(58+42+40)÷7=140÷7=20

  集体在投影上订正。

  (七)课堂总结

  今天这节课我们上得很好。在今后的学习和实践中要注意应用我们所学过的定律和性质,使计算简便,提高效率。

  课堂教学设计说明

  四则运算的定律和性质是学生进行简便运算的依据。灵活地运用四则运算的定律和性质,不但能提高计算的速度,还能培养学生思维的灵活性。所以在复习中,注重学生对四则运算定律和性质的理解、记忆,再加以灵活运用,从而达到培养学生计算能力的目的,这是非常必要的。因此,在复习中首先要让学生搞清所学过的运算定律和性质有哪些,分别用字母怎么表示,语言怎么叙述,达到全面巩固理解的目的。其间,分别插入适当判断、填空练习,以帮助学生理解及灵活运用。另外,利用积、商的变化规律培养学生思维的灵活性和深刻性,使学生在观察推导中理解积、商的变化规律实际上就是乘法运算定律的具体体现,同时,也为简便计算打开多种途径。然后,在学生全面掌握的基础上出现一组选择题,综合地培养学生运用定律和性质的能力,反馈面也扩展到全班,便于了解多数学生的情况。最后出示两道简算题,让每个学生动手动脑,以考查学生是否掌握了四则运算的定律,是否能灵活地运用。

  板书设计

  四则运算的定律和性质复习

  加法交换律:a+b=b+a减法的性质:

  结合律:(a+b)+c=a+(b+c) a-(b+c)=a-b-c

  乘法交换律:ab=ba除法的性质:

  结合律:(ab)·c=a·(b·c)(a+b)÷c=a÷c+b÷c(c≠0)

  分配律:(a+b)·c=a·c+b·c

四则运算的意义和法则 篇4

  教学目标

  1.归纳整理四则运算的意义.

  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

  3.总结四则运算中的一些特殊情况.

  4.总结验算方法.

  教学重点

  整理四则运算的意义及法则.

  教学难点

  对四则运算算理本质规律的认识和理解.

  教学步骤

  一、复习旧知识,归纳知识结构.

  (一)四则运算的意义.【演示课件】

  1.举例说明四则运算的意义.

  根据下面算式,说一说它们表示的四则运算的意义.

  2+3 0.6-0.4 2×3 6÷2

  100-15 2×0.3 0.6÷0.2

  0.2+0.3 2×1.3

  2.观察图片.

  教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

  (加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

  3.你能用图示的形式表示出四则运算的意义之间的关系吗?

  (二)四则运算的法则.【继续演示课件】

  1.加法和减法的法则.

  (1)出示三道题,请分析错误原因并改正.

  错误分别是:数位没有对齐,小数点没有对齐,没有通分.

  (2)三条法则分别是怎样要求的?

  整数:相同数位对齐

  小数:小数点对齐

  分数:分母相同时才能直接相加减

  思考:三条法则的要求反映了一条什么样的共同的规律?

  (相同计数单位上的数才能相加或相减)

  2.乘法和除法的法则.

  (1)出示两道题:

  口述整数乘法和除法的计算法则.

  改编成小数乘除法计算:1.42×2.3 4.182÷1.23

  (要求:学生在整数计算的结果上确定小数点的位置)

  (2)教师提问.

  通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

  (小数乘除法都先按整数乘除法法则计算)

  有什么不同?

  (小数乘、除法还要在计算结果上确定小数点的位置.)

  (3)根据 ,说一说分数乘法和除法的法则.

  分数乘法和除法比较又有什么相似和不同?

  相似:分数除法要转化成分数乘法计算.

  不同:分数除法转化后乘的是除数的倒数.

  (三)练习.【继续演示课件】

  计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.03 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  (要先通分)

  (四)法则中的特殊情况.【继续演示课件】

  请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

  分类如下:

  第一组:a+0=a a-0=a a×0=00÷a=0

  第二组:a×1=a a÷1=a

  第三组:a-a=0 a÷a=1

  (五)验算.【继续演示课件】

  1.根据四则运算的关系,完成下面等式.

  2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

  3.练习:先说出下面各算式的意义,再计算,并进行验算.

  4325+379 47.5-7.65 18.4×75

  84× 587.1÷0.57 ÷

  二、全课小结.

  这节课我们对进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

  三、随堂练习.

  1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

  43×0.78= 0.43×7.8=

  33.54÷0.78= 3354÷0.43=

  2.在○里填上“>”“<”或“=”.

  ○ 12× ○12÷3×2

  ÷ ○ 12÷ ○12÷2×3

  3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

  四、布置作业.

  计算下面各题,并且验算.

  1624÷56 -

  × 4.5×5.02

  五、板书设计

四则运算的意义和法则 篇5

  教学目标

  1.归纳整理四则运算的意义.

  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

  3.总结四则运算中的一些特殊情况.

  4.总结验算方法.

  教学重点

  整理四则运算的意义及法则.

  教学难点

  对四则运算算理本质规律的认识和理解.

  教学步骤

  一、复习旧知识,归纳知识结构.

  (一)四则运算的意义.【演示课件】

  1.举例说明四则运算的意义.

  根据下面算式,说一说它们表示的四则运算的意义.

  2+3 0.6-0.4 2×3 6÷2

  100-15 2×0.3 0.6÷0.2

  0.2+0.3 2×1.3

  2.观察图片.

  教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

  (加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

  3.你能用图示的形式表示出四则运算的意义之间的关系吗?

  (二)四则运算的法则.【继续演示课件】

  1.加法和减法的法则.

  (1)出示三道题,请分析错误原因并改正.

  错误分别是:数位没有对齐,小数点没有对齐,没有通分.

  (2)三条法则分别是怎样要求的?

  整数:相同数位对齐

  小数:小数点对齐

  分数:分母相同时才能直接相加减

  思考:三条法则的要求反映了一条什么样的共同的规律?

  (相同计数单位上的数才能相加或相减)

  2.乘法和除法的法则.

  (1)出示两道题:

  口述整数乘法和除法的计算法则.

  改编成小数乘除法计算:1.42×2.3 4.182÷1.23

  (要求:学生在整数计算的结果上确定小数点的位置)

  (2)教师提问.

  通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

  (小数乘除法都先按整数乘除法法则计算)

  有什么不同?

  (小数乘、除法还要在计算结果上确定小数点的位置.)

  (3)根据 ,说一说分数乘法和除法的法则.

  分数乘法和除法比较又有什么相似和不同?

  相似:分数除法要转化成分数乘法计算.

  不同:分数除法转化后乘的是除数的倒数.

  (三)练习.【继续演示课件】

  计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.03 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  (要先通分)

  (四)法则中的特殊情况.【继续演示课件】

  请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

  分类如下:

  第一组:a+0=a a-0=a a×0=00÷a=0

  第二组:a×1=a a÷1=a

  第三组:a-a=0 a÷a=1

  (五)验算.【继续演示课件】

  1.根据四则运算的关系,完成下面等式.

  2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

  3.练习:先说出下面各算式的意义,再计算,并进行验算.

  4325+379 47.5-7.65 18.4×75

  84× 587.1÷0.57 ÷

  二、全课小结.

  这节课我们对进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

  三、随堂练习.

  1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

  43×0.78= 0.43×7.8=

  33.54÷0.78= 3354÷0.43=

  2.在○里填上“>”“<”或“=”.

  ○ 12× ○12÷3×2

  ÷ ○ 12÷ ○12÷2×3

  3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

  四、布置作业.

  计算下面各题,并且验算.

  1624÷56 -

  × 4.5×5.02

  五、板书设计

四则运算的意义和法则 篇6

  整体感知

  整数、小数、分数的四则运算意义和法则分散在一至六年级,本课是对这些知识进行整理和复习,通过整理和复习,进一步认请四则运算意义和法则的本质,在复习中把知识条理化,在整理中形成比较完整知识结构。

  由于本课涉及的意义和法则的内容均是旧知识,在本课教学中力戒重复旧知,而把重点应放在知识整理,运用归类,比较等方法,达到最佳效果,难点是对四则运算法则本质特点的高度概括。

  针对本课意义、法则、文字,表述内容较多,整理和复习时要多学一些典型实例,通过具体实例来整理复习意义和法则,既能减轻不必要的思维难度,又能使学生在具体生动的环境中探索知识的奥秘。

  另外,整理复习课不同于其它新授课的课堂结构,往往是复习和整理浑然一体,在复习的同时整理,在整理中加深和提高。

  教学内容:教材P90、91、92,练习二十1—6题。

  素质教育目标

  (一)知识教学点

  1.归纳整理四则运算的意义。

  2.归纳整理整数、小数、分数计算法则的异同点,进一步总结计算时应遵循的一般规律。

  3.总结四则运算中的一些特殊情况。

  4.总结验算方法。

  (二)能力训练点

  1.培养学生对学过的知识进行归类整理能力,比较异同能力,形成知识结构能力。

  2.运用法则熟练、灵活的计算能力,提高计算的准确率和速度。

  (三)德育渗透点

  引导学生探索知识间的内在联系,认识事物本质。

  教学重点:整理四则运算的意义,整理四则计算法则。

  教学难点:对四则计算算理本质规律的认识和理解。

  教具学具准备:小黑板、幻灯片。

  教学步骤

  一、复习旧知识,归纳知识结构

  1.四则运算的意义。

  (1)举例说明四则运算的意义

  根据下面算式,说一说它们表示的四则运算意义:

  [用具体实例说明四则意义,不仅避免死记硬背,而且还能唤起学生记忆,使知识掌握的更牢固]

  (2)观察表格。

  请同学观察课本90页表格,看一看,整数、小数、分数的哪则意义相同?哪则意义有扩展?学生回答。

  (整数、小数、分数的加法意义相同,减法意义相同,除法意义相同,只有乘法意义在小数和分数中有所扩展)

  (3)你能用图示的形式表示出四则意义之间的关系吗?

  学生表示为:

  [通过看表格,指出知识的异同点,通过画图式,弄清知识间相互联系,从而使学生对同一层面的相关知识,有了更深的纵向认识,弄清了横向关系,形成了知识网络。]

  2.四则运算的法则。

  (1)加法和减法的法则。

  ①出示三道题,请分析错误原因并改正。

  学生回答,它们的错误分别是:数位没有对齐,小数点没有对齐,没有通分。

  ②三条法则分别是怎样要求的?(相同数位对齐,小数点对齐,分母相同时才能直接相加减)。

  三条法则的要求反映了一条什么样的共同的规律?能用一句话概括吗?(相同单位上的数才能相加或相减。)

  [学生进入高年级,要不断培养学生从现象到本质,从个别到一般的辩证思维能力,不断加以总结和概括,逐步认识事物的本质属性。]

  (2)乘法和除法的法则。

  ①出示两道题:

  对照上面两题,口述整数乘法和除法的计算法则。

  再把上面两道题改编成小数乘除法计算:1.42×2.3、4.182÷1.23让学生在整数计算的结果上确定小数点的位置。

  ②通过上面计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

  (小数乘法先按整数乘法法则计算,小数除法把除数转化成整数后,也按整数除法法则计算。)

  有什么不同,(小数乘、除法还要在计算结果上确定小数点的位置。)

  说一说分数乘法和除法的法则。

  分数乘法和除法比较又有什么相似和不同?(相似点是分数除法要转化成分数乘法计算;不同点是分数除法转化后乘以的是除法的倒数。)

  3.口算

  (1)计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.3 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  [本套教材十分重视口算能力的培养,总结口算中容易出错的情况,有利于提高口算正确率]

  (2)完成课本92页的口算,教师用秒表计时。

  4.法则中的特殊情况。

  (1)先把结果填在课本92页上。

  (2)请同学们根据a与0的运算,a与1的运算和a与a的运算分类。学生分类后如下:

  第一组:a+0=a a-0=a a×0=0 0÷a=0

  第三组:a-a=0 a÷a=1

  5.验算。

  (1)根据四则运算的关系,完成课本92页的等式。

  (2)根据这些关系,说一说对加、减法或乘、除法的计算进行验算的一般方法。

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算。)

  (3)完成课本92页的做一做第2题。

  二、综合练习

  1.练习二十第一题。让学生说出计算根据,复习积的变化规律和商不变的性质。

  2.课本95页第二题。让学生总结一个非零的数乘以比1小的数或比1大的数后积的变化规律。

  3.课本95页第三题。让学生口述出一个数除以小数转化成除以一个分数,再转化成乘以一个整数的口算过程。

  4.课本95页第五题。

  三、全课小结:这节课我们对进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯。

  四、课堂作业课本95页第四、六两题。

四则运算的意义和法则 篇7

  教学目标

  1.归纳整理四则运算的意义.

  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

  3.总结四则运算中的一些特殊情况.

  4.总结验算方法.

  教学重点

  整理四则运算的意义及法则.

  教学难点

  对四则运算算理本质规律的认识和理解.

  教学步骤

  一、复习旧知识,归纳知识结构.

  (一)四则运算的意义.【演示课件】

  1.举例说明四则运算的意义.

  根据下面算式,说一说它们表示的四则运算的意义.

  2+3 0.6-0.4 2×3 6÷2

  100-15 2×0.3 0.6÷0.2

  0.2+0.3 2×1.3

  2.观察图片.

  教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

  (加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

  3.你能用图示的形式表示出四则运算的意义之间的关系吗?

  (二)四则运算的法则.【继续演示课件】

  1.加法和减法的法则.

  (1)出示三道题,请分析错误原因并改正.

  错误分别是:数位没有对齐,小数点没有对齐,没有通分.

  (2)三条法则分别是怎样要求的?

  整数:相同数位对齐

  小数:小数点对齐

  分数:分母相同时才能直接相加减

  思考:三条法则的要求反映了一条什么样的共同的规律?

  (相同计数单位上的数才能相加或相减)

  2.乘法和除法的法则.

  (1)出示两道题:

  口述整数乘法和除法的计算法则.

  改编成小数乘除法计算:1.42×2.3 4.182÷1.23

  (要求:学生在整数计算的结果上确定小数点的位置)

  (2)教师提问.

  通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

  (小数乘除法都先按整数乘除法法则计算)

  有什么不同?

  (小数乘、除法还要在计算结果上确定小数点的位置.)

  (3)根据 ,说一说分数乘法和除法的法则.

  分数乘法和除法比较又有什么相似和不同?

  相似:分数除法要转化成分数乘法计算.

  不同:分数除法转化后乘的是除数的倒数.

  (三)练习.【继续演示课件】

  计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.03 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  (要先通分)

  (四)法则中的特殊情况.【继续演示课件】

  请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

  分类如下:

  第一组:a+0=a a-0=a a×0=00÷a=0

  第二组:a×1=a a÷1=a

  第三组:a-a=0 a÷a=1

  (五)验算.【继续演示课件】

  1.根据四则运算的关系,完成下面等式.

  2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

  3.练习:先说出下面各算式的意义,再计算,并进行验算.

  4325+379 47.5-7.65 18.4×75

  84× 587.1÷0.57 ÷

  二、全课小结.

  这节课我们对进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

  三、随堂练习.

  1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

  43×0.78= 0.43×7.8=

  33.54÷0.78= 3354÷0.43=

  2.在○里填上“>”“<”或“=”.

  ○ 12× ○12÷3×2

  ÷ ○ 12÷ ○12÷2×3

  3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

  四、布置作业.

  计算下面各题,并且验算.

  1624÷56 -

  × 4.5×5.02

  五、板书设计

四则运算的意义和法则 篇8

  教学内容:教科书第90—9:页,练习二十的第1—6题。

  教学目的:使学生掌握,以及四则运算各部分间的关系。比较熟练地进行整数、小数、分数的四则运算。

  教学过程:

  一、四则运算的意义

  1.整数四则运算的意义。

  教师:“整数加法、减法、乘法、除法的意义各是什么?”指名说一说,教师根据学生的回答,按照教科书第90页表的形式进行整理。在学生回答时,可以举例说明各种运算的意义。如:

  “为什么说整数的乘法是求几个相同加数和的简便运算?”

  “为什么说除法是已、知两个因数的积与其中一个因数,求另一个因数的运算?”

  教师引导学生说出各种运算之间的关系。如:

  “加法与减法有什么联系?”(减法是加法的逆运算。)

  “加法与乘法有什么联系?”(乘法是求几个相同加数的和的简便运算。)

  “乘法与除法有什么联系?”(除法是乘法的逆运算。)

  教师根据学生的回答,可以把四种运算的联系整理成下图。

  加法 乘法

  求几个相同加数的和的简便 运算

  逆运算 逆运算

  减法 除法

  2.小数和分数四则运算的意义。

  指名分别说出小数和分数四则运算的意义。教师根据学生的回答,把教科书第90页的表补充完整。

  让学生仿照前面整数四则运算的讨论,分别说一说小数、分数四则运算的联系。然后与整数四则运算进行比较。

  “整数、小数、分数四则运算的意义有什么相同点,有什么不同点?”(整数、小数、分数的加法、减法和除法的意义都是相同的;小数和分数的乘法的意义与整数乘法意义相比有所扩展。)

  二、四则运算的法则

  l,加法和减法的计算法则。

  指名分别说一说整数、小数、分数加法和减法的计算法则各是怎样的;根据学生的回答、教师可以把每种运算各要注意的主要内容写在黑板上:如

  教师:“仔细观察整数、小数、分数的加法和减法的计算法则,你能发现它们有什么共同点吗?”如果学生说得不清楚.教师可以进一步引导:

  “整数加、减法数值对齐后。是什么样的数进行加、减?”(相同计数单位上的数相加、减。)

  “小数加、减法小数点对齐后,是什么样的数进行加、减?”(相同计数单位上的数相加、减。)

  “分数加、减法先通分后,是什么样的数进行加、减:”(同分母分数相加、减.也就是相同分数单位的分数相加、减。)

  “它们有什么共同点吗?”(都是把相同单位上的数相加或相减。)

  2,乘法和除法的计算法则。

  (1)整数、小数乘法和除法。

  指名分别说一说整数、小数乘法和除法的计算法则各是怎样的:

  教师:“小数乘法和除法的计算法则与整数乘法和除法有什么相似的地方?有什么不同?”(它们的基本算理和算法是一致的,只是在计算小数乘、除时,需要根据参加运算的数的小数位数来确定计算结果中小数点的位置。)

  (2)分数乘法和除法。

  教师:“分数乘法有几种情况?请分别说出它们的计算法则。”学生回答后可以继续提问:

  “分数乘以分数的计算法则,为什么适用于分数乘以整数的计算法则?”(因为整数可以看作分母是l的假分数。)

  "什么样的两个数互为倒数?怎样求一个数的倒数?”

  3.课堂练习。

  做教科书第91页的中间试算题。学生独立计算,教师巡视,对学习有困难的学生进行个别辅导。集体订正时,让有错误的学生说一说是怎样错的。

  4.口算的复习。

  教师:“整数、小数的加减口算与笔算有什么相同的地方?有什么不同的地方?”

  (相同点:都是把相同单位的数相加减,满十向前一位进l。从前一位退1当十。不同点:笔算一敏从低拉算起3口算既可以从高位算起,也可以从低位算起。)

  做教科书第91页下面的口算题。学生独立计算,集体订正。

  三、四则运算中各部分间的关系

  l,四则运算中的一些特殊情况。

  教师:“在四则运算中关于0和1的运算,有一些特殊的规定。谁能说一说是怎样规定的?”指名回答后,教师可以让学生做教科书第92页上面的三组题,再让学生说一说0为什么不能作除数。

  2.四则运算中各部分间的关系:

  教颊:。四则运算中,每种运算最基本的数量关系是什么?”

  。根据加法与减法的关系。还可以得出什么关系?”

  “根据乘法与除法的关系。还可以得出什么关系?”

  学生回答后.教师按照教科书上的形式进行板书。

  然后,教师还可以引导学生对四则运算中各部分间的关系进行分别整理。如:

  “加法各部分间的关系是什么?”

  “减法各部分间的关系是什么?”

  把这些关系整理成下表。

  教师:“应用这些关系可以对四则运算进行验算。请分别说—说对四则运算应该怎样验算。”

  3.课堂练习。

  做教科书第92页“做一做”的第1、2题。

  第l题。先让学生独立计算,教师巡权.了解学生掌握的情况。集体订正时,让学生说一说是用什么方法进行验算的。使学生明确一道计算题可以用不同方法进行验算,自己认为哪一种简便就用哪一种。

  第2题,先让学生说一说每个算式的意义,然后独立计算。集体订正。

  四、小结(略)

  五、作业

  练习二十的第2、4、6题。

  对学有余力的学生,可让他们思考练习二十的第13*、14*题。

四则运算的意义和法则 篇9

  教学目标

  1.归纳整理四则运算的意义.

  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

  3.总结四则运算中的一些特殊情况.

  4.总结验算方法.

  教学重点

  整理四则运算的意义及法则.

  教学难点

  对四则运算算理本质规律的认识和理解.

  教学步骤

  一、复习旧知识,归纳知识结构.

  (一)四则运算的意义.【演示课件“四则运算的意义和法则”】

  1.举例说明四则运算的意义.

  根据下面算式,说一说它们表示的四则运算的意义.

  2+3 0.6-0.4 2×3 6÷2

  100-15 2×0.3 0.6÷0.2

  0.2+0.3 2×1.3

  2.观察图片.

  教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

  (加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

  3.你能用图示的形式表示出四则运算的意义之间的关系吗?

  (二)四则运算的法则.【继续演示课件“四则运算的意义和法则”】

  1.加法和减法的法则.

  (1)出示三道题,请分析错误原因并改正.

  错误分别是:数位没有对齐,小数点没有对齐,没有通分.

  (2)三条法则分别是怎样要求的?

  整数:相同数位对齐

  小数:小数点对齐

  分数:分母相同时才能直接相加减

  思考:三条法则的要求反映了一条什么样的共同的规律?

  (相同计数单位上的数才能相加或相减)

  2.乘法和除法的法则.

  (1)出示两道题:

  口述整数乘法和除法的计算法则.

  改编成小数乘除法计算:1.42×2.3 4.182÷1.23

  (要求:学生在整数计算的结果上确定小数点的位置)

  (2)教师提问.

  通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

  (小数乘除法都先按整数乘除法法则计算)

  有什么不同?

  (小数乘、除法还要在计算结果上确定小数点的位置.)

  (3)根据 ,说一说分数乘法和除法的法则.

  分数乘法和除法比较又有什么相似和不同?

  相似:分数除法要转化成分数乘法计算.

  不同:分数除法转化后乘的是除数的倒数.

  (三)练习.【继续演示课件“四则运算的意义和法则”】

  计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.03 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  (要先通分)

  (四)法则中的特殊情况.【继续演示课件“四则运算的意义和法则”】

  请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

  分类如下:

  第一组:a+0=a a-0=a a×0=00÷a=0

  第二组:a×1=a a÷1=a

  第三组:a-a=0 a÷a=1

  (五)验算.【继续演示课件“四则运算的意义和法则”】

  1.根据四则运算的关系,完成下面等式.

  2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

  3.练习:先说出下面各算式的意义,再计算,并进行验算.

  4325+379 47.5-7.65 18.4×75

  84× 587.1÷0.57 ÷

  二、全课小结.

  这节课我们对四则运算的意义和法则进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

  三、随堂练习.

  1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

  43×0.78= 0.43×7.8=

  33.54÷0.78= 3354÷0.43=

  2.在○里填上“>”“<”或“=”.

  ○ 12× ○12÷3×2

  ÷ ○ 12÷ ○12÷2×3

  3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

  四、布置作业.

  计算下面各题,并且验算.

  1624÷56 -

  × 4.5×5.02

  五、板书设计

  四则运算的意义和法则

四则运算的意义和法则 篇10

  教学内容:教材第65~66页整数、小数四则运算及运算法则、四则运算之间的关系、“练一练”,练习十二第1~5题。

  教学要求:

  1、使学生进一步认识整数四则运算的意义,正确掌握整数、小数四则运算的法则及整数计算法则与小数计算法则之间的联系,能正确地进行计算。

  2、使学生掌握加减法之间、乘除法之间的关系,并能应用这种关系进行验算。

  教学过程:

  一、揭示课题

  今天,我们复习整数和小数四则运算的意义和法则。(板书课题)通过复习,要加深认识四则运算的意义和计算法则,能正确地进行整数和小数的四则运算,并能验算。

  二、复习意义和法则

  1、复习整数四则运算意义。

  提问:通常所说的四则运算是指什么?谁来说一说整数四则运算的意义各是怎样的?结合学生说明的意义,要求学生举例说明,注意减法和乘法举例联系加法,除法举例联系乘法。

  2、提问:你能根据刚才整理的知识说一说整数四则运算之间的联系吗?

  3、做“练一练”第1题。指名学生说一说。

  减法对于加法、除法对于乘法各是什么运算?

  4、做“练—练”第2题。

  (1)做第(1)小题。

  小黑板出示。学生分两组,分别做加法题和减法题。口答得数,老师板书。提问:计算整数加法和小数加法有什么共同特点?计算整数减法和小数减法有什么共同特点?大家把黑板上的加、减算式比较一下,再想一想:整数、小数的加法、减法计算时有什么相同的地方?指出:因为只有计数单位相同的数才能直接相加、减,所以整数、小数的加法和减法都要把相同数位对齐,并且都从个位算起。加法里哪一位满十就向前一位进1,减法里哪一位不够减就从前一位退1作十再减。

  (2)做第(2)小题。

  指名两人板演列竖式计算,分别做乘、除法。学生分两组,分别完成乘法和除法计算。集体订正。提问:整数乘法和除法是怎样计算的?小数乘法和除法计算和整数有什么相似的地方?有什么不同的地方?指出:计算整数乘、除法都要按法则进行计算。小数乘法先按整数乘法算,再根据因数里一共几位小数,在积里点上小数点;小数除法转化成除数是整数来除,同样注意小数点的处理。

  5、学生练习。

  (1)计算:2637+851 42-7.5 1.4×15 2.4÷12

  指名四人板演,其余学生做在练习本上。集体订正。

  (2)做“练一练”第3题。

  小黑板出示,指名口算。提问:谁来说一说,在计算时有。和1时,有哪些规律?

  三、复习四则运算关系

  1、整理四则运算关系。

  让学生完成教材第65页上的填充。提问:加、减法算式各部分之间有怎样的关系?乘、除法算式之间呢?(老师板书)

  2、学生练习。

  (1)提问:四则运算的这些关系有哪些应用?

  (2)做“练一练”第4题。

  指名四人板演,其余学生分四组,分别做前两题和后两题。集体订正,要求说说各是依据什么来验算的。

  四、综合练习

  1、口算练习十二第2题。

  小黑板出示,让学生口算结果并板书。引导学生讨论,说说每组计算有什么规律。

  2、做练习十二第3题。

  要求学生一组一组题填符号,然后思考在乘法和除法计算里,你发现结果有什么规律?让学生说一说发现的规律。

  3、做练习十二第4题。

  让学生估计得数,并说明想法。

  五、课堂小结

  这节课复习了什么内容?你进一步认识了哪些内容?

  六、布置作业

  课堂作业:练习十二第1题和第5题。

  家庭作业:练习十二第4题。

  • 推荐阅读:
  • 四则运算的意义和法则
  • 四则运算的意义和法则
  • 四则运算的意义和法则
  • 四则运算的意义和法则
  • 四则运算的意义和法则
  • 四则运算的意义和法则
  • 四则运算教案
  • 混合运算教案
  • 混合运算教学设计

文章评论

    共有条评论来说两句吧...

    用户名:

    验证码: