您现在的位置是:首页 > 心得体会

高中数学必修2教案

2023-12-18人围观
简介高中数学必修2教案 篇1  教学准备  教学目标  进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的'形状,证明三角形中的三角恒等式。  教学重难点  教学重点:熟练运用定理。  教学难点:应用正、余弦定理进行边角关系的相互转化。  教学过程  一、复习准备:  1、写出正弦定理、余弦定理及推论等公式。  2、讨论各公式所求解的三角形类型。  二、讲授新课:  

高中数学必修2教案 篇1

  教学准备

  教学目标

  进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的'形状,证明三角形中的三角恒等式。

  教学重难点

  教学重点:熟练运用定理。

  教学难点:应用正、余弦定理进行边角关系的相互转化。

  教学过程

  一、复习准备:

  1、写出正弦定理、余弦定理及推论等公式。

  2、讨论各公式所求解的三角形类型。

  二、讲授新课:

  1、教学三角形的解的讨论:

  ①出示例1:在△ABC中,已知下列条件,解三角形。

  分两组练习→讨论:解的个数情况为何会发生变化?

  ②用如下图示分析解的情况。(A为锐角时)

  ②练习:在△ABC中,已知下列条件,判断三角形的解的情况。

  2、教学正弦定理与余弦定理的活用:

  ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。

  分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。

  ②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。

  分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断

  ③出示例4:已知△ABC中,,试判断△ABC的形状。

  分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?

  3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

  三、巩固练习:

  3、作业:教材P11 B组1、2题。

高中数学必修2教案 篇2

  一、向量的概念

  1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

  2、叫做单位向量

  3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

  4、且的向量叫做相等向量

  5、叫做相反向量

  二、向量的表示方法:几何表示法、字母表示法、坐标表示法

  三、向量的加减法及其坐标运算

  四、实数与向量的乘积

  定义:实数λ与向量的积是一个向量,记作λ

  五、平面向量基本定理

  如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

  六、向量共线/平行的充要条件

  七、非零向量垂直的充要条件

  八、线段的定比分点

  设是上的两点,P是上_________的任意一点,则存在实数,使_______________,则为点P分有向线段所成的比,同时,称P为有向线段的定比分点

  定比分点坐标公式及向量式

  九、平面向量的数量积

  (1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

  (2)|a||b|cosθ叫a与b的数量积,记作a·b,即a·b=|a||b|cosθ

  (3)平面向量的数量积的坐标表示

  十、平移

  典例解读

  1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

  其中,正确命题的序号是______

  2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____

  3、若将向量a=(2,1)绕原点按逆时针方向旋转得到向量b,则向量b的坐标为_____

  4、下列算式中不正确的是( )

  (A) AB+BC+CA=0 (B) AB-AC=BC

  (C) 0·AB=0 (D)λ(μa)=(λμ)a

  5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

  、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )

  (A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+1

  7、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )

  (A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5

  (C)2x-y=0 (D)x+2y-5=0

  8、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则PQ=_________

  9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长

  10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

  (A)-5 (B)5 (C)7 (D)-1

  11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

  (A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|

  (C)(a·b)·c-(b·c)·a与b垂直(D)(a·b)·c-(b·c)·a=0

  12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

  (A)2 (B)0 (C)1 (D)-1/2

  16、利用向量证明:△ABC中,M为BC的中点,则AB2+AC2=2(AM2+MB2)

  17、在三角形ABC中,=(2,3),=(1,k),且三角形ABC的一个内角为直角,求实数k的值

  18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量

高中数学必修2教案 篇3

  一、教学目标

  1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

  2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

  二、教学重点:画出简单几何体、简单组合体的三视图;

  难点:识别三视图所表示的空间几何体。

  三、学法指导:观察、动手实践、讨论、类比。

  四、教学过程

  (一)创设情景,揭开课题

  展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

  (二)讲授新课

  1、中心投影与平行投影:

  中心投影:光由一点向外散射形成的投影;

  平行投影:在一束平行光线照射下形成的投影。

  正投影:在平行投影中,投影线正对着投影面。

  2、三视图:

  正视图:光线从几何体的前面向后面正投影,得到的投影图;

  侧视图:光线从几何体的左面向右面正投影,得到的投影图;

  俯视图:光线从几何体的上面向下面正投影,得到的投影图。

  三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

  三视图的画法规则:长对正,高平齐,宽相等。

  长对正:正视图与俯视图的长相等,且相互对正;

  高平齐:正视图与侧视图的高度相等,且相互对齐;

  宽相等:俯视图与侧视图的宽度相等。

  3、画长方体的三视图:

  正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

  长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

  4、画圆柱、圆锥的三视图:

  5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

  (三)巩固练习

  课本P15 练习1、2; P20习题1.2 [A组] 2。

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)布置作业

  课本P20习题1.2 [A组] 1。

高中数学必修2教案 篇4

  一、概述

  教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

  二、教学目标分析

  1. 知识目标

  1)

  2) 掌握等比数列的定义 理解等比数列的通项公式及其推导

  2.能力目标

  1)学会通过实例归纳概念

  2)通过学习等比数列的通项公式及其推导学会归纳假设

  3)提高数学建模的能力

  3、情感目标:

  1)充分感受数列是反映现实生活的模型

  2)体会数学是来源于现实生活并应用于现实生活

  3)数学是丰富多彩的而不是枯燥无味的

  三、教学对象及学习需要分析

  1、 教学对象分析:

  1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

  2)对归纳假设较弱,应加强这方面教学

  2、学习需要分析:

  四. 教学策略选择与设计

  1.课前复习

  1)复习等差数列的概念及通向公式

  2)复习指数函数及其图像和性质

  2.情景导入

高中数学必修2教案 篇5

  (一)课标要求

  本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

  (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

  (2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

  (二)编写意图与特色

  1.数学思想方法的重要性

  数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

  本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

  教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

  2.注意加强前后知识的联系

  加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

  本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

  《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

  位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

  在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

  3.重视加强意识和数学实践能力

  学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

  (三)教学内容及课时安排建议

  1.1正弦定理和余弦定理(约3课时)

  1.2应用举例(约4课时)

  1.3实习作业(约1课时)

  (四)评价建议

  1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

  2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

高中数学必修2教案 篇6

  教学准备

  教学目标

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

  教学重难点

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

  教学过程

  等比数列性质请同学们类比得出.

  【方法规律】

  1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.

  2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数

  a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

  3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.

  【示范举例】

  例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.

  (2)一个等比数列的前三项之和为26,前六项之和为728,则a1= ,q= .

  例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.

  例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.

高中数学必修2教案 篇7

  教学目标

  1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

  2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

  3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  教学重难点

  1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

  2、利用基本不等式求解实际问题中的最大值和最小值。

  教学过程

  一、创设情景,提出问题;

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问]你能在这个图中找出一些相等关系或不等关系吗?

  本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式

  在此基础上,引导学生认识基本不等式。

  三、理解升华:

  1、文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2、联想数列的知识理解基本不等式

  已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?

  两个正数的等差中项不小于它们正的等比中项。

  3、符号语言叙述:

  4、探究基本不等式证明方法:

  [问]如何证明基本不等式?

  (意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)

  方法一:作差比较或由

  展开证明。

  方法二:分析法(完成课本填空)

  设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、

  动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。

  点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.

  5、探究基本不等式的几何意义:

  借助初中阶段学生熟知的几何图形,引导学生

  几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

  四、探究归纳

  下列命题中正确的是

  结论:

  若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;

  若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。

  简记为:“一正、二定、三相等”。

  五、领悟练习:

  公式应用之二:(最优化问题)

  设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

  (1)在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

  (2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?

  六、反思总结,整合新知:

  通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要

  请教?

  设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.

  老师根据情况完善如下:

  两种思想:数形结合思想、归纳类比思想。

  三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”

高中数学必修2教案 篇8

  教学准备

  教学目标

  1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

  2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

  归纳——猜想——证明的数学研究方法;

  3、数学思想:培养学生分类讨论,函数的数学思想。

  教学重难点

  重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

  难点:等比数列的性质的探索过程。

  教学过程

  1、问题引入:

  前面我们已经研究了一类特殊的数列——等差数列。

  问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

  (学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  要想确定一个等差数列,只要知道它的首项a1和公差d。

  已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

  师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  (第一次类比)类似的,我们提出这样一个问题。

  问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

  (这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

  2、新课:

  1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

  师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

  师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

  公式的推导:(师生共同完成)

  若设等比数列的公比为q和首项为a1,则有:

  方法一:(累乘法)

  3)等比数列的性质:

  下面我们一起来研究一下等比数列的性质

  通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

  问题4:如果{an}是一个等差数列,它有哪些性质?

  (根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

  3、例题巩固:

  例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

  答案:1458或128。

  例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____.

  例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?

  (本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

  1、 小结:

  今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

  我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

  2、作业:

  P129:1,2,3

  思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?

高中数学必修2教案 篇9

  一、教学目标:

  1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.

  2.培养广泛联想的能力和热爱数学的态度.

  二、教学重点:

  在于让学生领悟生活中处处有变量,变量之间充满了关系

  教学难点:培养广泛联想的能力和热爱数学的态度

  三、教学方法:

  探究交流法

  四、教学过程

  (一)、知识探索:

  阅读课文P25页。实例分析:书上在高速公路情境下的问题。

  在高速公路情景下,你能发现哪些函数关系?

  2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?

  问题小结:

  1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。

  2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。

  3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。

  (二)、新课探究——函数概念

  1.初中关于函数的定义:

  2.从集合的观点出发,函数定义:

  给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;

  此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。

  定义域,值域,对应法则

  4.函数值

  当x=a时,我们用f(a)表示函数y=f(x)的函数值。

高中数学必修2教案 篇10

  教学准备

  教学目标

  掌握三角函数模型应用基本步骤:

  (1)根据图象建立解析式;

  (2)根据解析式作出图象;

  (3)将实际问题抽象为与三角函数有关的简单函数模型.

  教学重难点

  .利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

  教学过程

  一、练习讲解:《习案》作业十三的第3、4题

  3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

  (1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

  (1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值

  (精确到0.001).

  (2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?

  (3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3

  米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

  本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

  练习:教材P65面3题

  三、小结:1、三角函数模型应用基本步骤:

  (1)根据图象建立解析式;

  (2)根据解析式作出图象;

  (3)将实际问题抽象为与三角函数有关的简单函数模型.

  2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

  四、作业《习案》作业十四及十五。

高中数学必修2教案 篇11

  教学准备

  教学目标

  一、知识与技能

  (1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.

  二、过程与方法

  创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.

  三、情态与价值

  通过本节的`学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.

  教学重难点

  重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.

  难点:理解弧度制定义,弧度制的运用.

  教学工具

  投影仪等

  教学过程

  一、创设情境,引入新课

  师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)

  显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.

  在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.

  二、讲解新课

  1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.

  弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.

  2.弧度制的定义

  长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).

  (师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.

  我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.

  角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.

  四、课堂小结

  度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

  五、作业布置

  作业:习题1.1 A组第7,8,9题.

  课后小结

  度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

  课后习题

  作业:习题1.1 A组第7,8,9题.

  板书

高中数学必修2教案 篇12

  教学设计说明:

  1、教学目标和重难点:首先作为等比数列的`第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

  教学设计过程:2、本节课主要从以下几个方面展开:

  1)通过复习等差数列的定义,类比得出等比数列的定义;

  2)等比数列的通项公式的推导;

  3)等比数列的性质;

  有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

  在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

  在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

  通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

  等比性质的研究是本节课的高潮,通过类比

  关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

高中数学必修2教案 篇13

  教学准备

  教学目标

  1.数列求和的综合应用

  教学重难点

  2.数列求和的综合应用

  教学过程

  典例分析

  3.数列{an}的前n项和Sn=n2-7n-8,

  (1)求{an}的通项公式

  (2)求{|an|}的前n项和Tn

  4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=

  5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

  6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

  (1)求{an}的通项公式

  (2)令bn=anxn ,求数列{bn}前n项和公式

  7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

  8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

  .已知数列{an},an∈N,Sn= (an+2)2

  (1)求证{an}是等差数列

  (2)若bn= an-30 ,求数列{bn}前n项的最小值

  0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

  (1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

  (2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

  11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

  12 .某商品在最近100天内的价格f(t)与时间t的

  函数关系式是f(t)=

  销售量g(t)与时间t的函数关系是

  g(t)= -t/3 +109/3 (0≤t≤100)

  求这种商品的日销售额的最大值

  注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学必修2教案 篇14

  教学准备

  教学目标

  1、知识与技能

  (1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

  2、过程与方法

  通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

  3、情感态度与价值观

  通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

  教学重难点

  重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

  难点:各种性质的应用。

  教学工具

  投影仪

  教学过程

  【创设情境,揭示课题】

  函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

  五、归纳整理,整体认识

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  六、布置作业:习题1-7第4,5,6题.

  课后小结

  归纳整理,整体认识

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  课后习题

  作业:习题1-7第4,5,6题.

  板书

  略

  • 推荐阅读:
  • 高中数学必修1优秀教案模板(通用2篇)
  • 高中数学教学反思范文700字(精选12篇)
  • 高中数学教学的个人反思范文(通用2篇)
  • 精选高中数学教案优秀范文(精选12篇)
  • 高中数学教案(精选17篇)
  • 高中数学函数教案(精选10篇)
  • 高中数学教学设计
  • 高中数学教案模板
  • 高中数学优秀教案

文章评论

    共有条评论来说两句吧...

    用户名:

    验证码: